gptq_model / utils /modelutils.py
ssaroya's picture
Upload 4 files
765e3c5
raw
history blame
2.56 kB
import torch
import torch.nn as nn
DEV = torch.device('cuda:0')
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
return res
def gen_conditions(_wbits, _groupsize):
wbits = _wbits
groupsize = _groupsize
conditions = []
while True:
if wbits >= 8:
if groupsize == -1 or groupsize == 32:
break
if groupsize > 32:
groupsize /= 2
else:
wbits *= 2
groupsize = _groupsize
conditions.append((int(wbits), int(groupsize)))
return conditions
# copy from https://github.com/openppl-public/ppq/blob/master/ppq/quantization/measure/norm.py
def torch_snr_error(y_pred: torch.Tensor, y_real: torch.Tensor, reduction: str = 'mean') -> torch.Tensor:
"""
Compute SNR between y_pred(tensor) and y_real(tensor)
SNR can be calcualted as following equation:
SNR(pred, real) = (pred - real) ^ 2 / (real) ^ 2
if x and y are matrixs, SNR error over matrix should be the mean value of SNR error over all elements.
SNR(pred, real) = mean((pred - real) ^ 2 / (real) ^ 2)
Args:
y_pred (torch.Tensor): _description_
y_real (torch.Tensor): _description_
reduction (str, optional): _description_. Defaults to 'mean'.
Raises:
ValueError: _description_
ValueError: _description_
Returns:
torch.Tensor: _description_
"""
y_pred = y_pred.type(torch.float32)
y_real = y_real.type(torch.float32)
if y_pred.shape != y_real.shape:
raise ValueError(f'Can not compute snr loss for tensors with different shape. '
f'({y_pred.shape} and {y_real.shape})')
reduction = str(reduction).lower()
if y_pred.ndim == 1:
y_pred = y_pred.unsqueeze(0)
y_real = y_real.unsqueeze(0)
y_pred = y_pred.flatten(start_dim=1)
y_real = y_real.flatten(start_dim=1)
noise_power = torch.pow(y_pred - y_real, 2).sum(dim=-1)
signal_power = torch.pow(y_real, 2).sum(dim=-1)
snr = (noise_power) / (signal_power + 1e-7)
if reduction == 'mean':
return torch.mean(snr)
elif reduction == 'sum':
return torch.sum(snr)
elif reduction == 'none':
return snr
else:
raise ValueError(f'Unsupported reduction method.')