gptq_model / convert_llama_weights_to_hf.py
ssaroya's picture
Upload 10 files
e5bdf53
import argparse
import os
from transformers.models.llama.convert_llama_weights_to_hf import write_model, write_tokenizer
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir",
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
)
parser.add_argument(
"--model_size",
choices=["7B", "13B", "30B", "65B", "tokenizer_only"],
)
parser.add_argument(
"--output_dir",
help="Location to write HF model and tokenizer",
)
args = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=os.path.join(args.output_dir, "llama-{}".format(args.model_size).lower()),
input_base_path=os.path.join(args.input_dir, args.model_size),
model_size=args.model_size,
)
write_tokenizer(
tokenizer_path=os.path.join(args.output_dir, "llama-{}".format(args.model_size).lower()),
input_tokenizer_path=os.path.join(args.input_dir, "tokenizer.model"),
)
if __name__ == "__main__":
main()