gptq_model / gcp_run.py
ssaroya's picture
Update gcp_run.py
bc80749
import argparse
import torch
import torch.nn as nn
import quant
from gptq import GPTQ
from utils import find_layers, DEV, set_seed, get_wikitext2, get_ptb, get_c4, get_ptb_new, get_c4_new, get_loaders
import transformers
from transformers import AutoTokenizer
def load_quant(model = "Wizard-Vicuna-13B-Uncensored-GPTQ",
checkpoint = "Wizard-Vicuna-13B-Uncensored-GPTQ/Wizard-Vicuna-13B-Uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors",
wbits = 4,
groupsize=128,
fused_mlp=True, eval=True, warmup_autotune=True):
from transformers import LlamaConfig, LlamaForCausalLM
config = LlamaConfig.from_pretrained(model)
def noop(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = noop
torch.nn.init.uniform_ = noop
torch.nn.init.normal_ = noop
torch.set_default_dtype(torch.half)
transformers.modeling_utils._init_weights = False
torch.set_default_dtype(torch.half)
model = LlamaForCausalLM(config)
torch.set_default_dtype(torch.float)
if eval:
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
quant.make_quant_linear(model, layers, wbits, groupsize)
del layers
print('Loading model ...')
if checkpoint.endswith('.safetensors'):
from safetensors.torch import load_file as safe_load
model.load_state_dict(safe_load(checkpoint), strict=False)
else:
model.load_state_dict(torch.load(checkpoint), strict=False)
if eval:
quant.make_quant_attn(model)
quant.make_quant_norm(model)
if fused_mlp:
quant.make_fused_mlp(model)
if warmup_autotune:
quant.autotune_warmup_linear(model, transpose=not (eval))
if eval and fused_mlp:
quant.autotune_warmup_fused(model)
model.seqlen = 2048
print('Done.')
return model
model = load_quant()
model.to(DEV)
tokenizer = AutoTokenizer.from_pretrained("Wizard-Vicuna-13B-Uncensored-GPTQ", use_fast=False)
input_ids = tokenizer.encode("TEXT PROMPT GOES HERE", return_tensors="pt").to(DEV)
with torch.no_grad():
generated_ids = model.generate(
input_ids,
do_sample=True,
min_length=50,
max_length=200,
top_p=0.99,
temperature=0.8,
)
print(tokenizer.decode([el.item() for el in generated_ids[0]]))