|
import argparse |
|
import time |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import quant |
|
|
|
from gptq import GPTQ, Observer |
|
from utils import find_layers, DEV, set_seed, get_wikitext2, get_ptb, get_c4, get_ptb_new, get_c4_new, get_loaders, export_quant_table, gen_conditions |
|
from texttable import Texttable |
|
|
|
|
|
def get_llama(model): |
|
|
|
def skip(*args, **kwargs): |
|
pass |
|
|
|
torch.nn.init.kaiming_uniform_ = skip |
|
torch.nn.init.uniform_ = skip |
|
torch.nn.init.normal_ = skip |
|
from transformers import LlamaForCausalLM |
|
model = LlamaForCausalLM.from_pretrained(model, torch_dtype=torch.float16) |
|
model.seqlen = 2048 |
|
return model |
|
|
|
|
|
@torch.no_grad() |
|
def llama_sequential(model, dataloader, dev): |
|
print('Starting ...') |
|
|
|
use_cache = model.config.use_cache |
|
model.config.use_cache = False |
|
layers = model.model.layers |
|
|
|
model.model.embed_tokens = model.model.embed_tokens.to(dev) |
|
model.model.norm = model.model.norm.to(dev) |
|
layers[0] = layers[0].to(dev) |
|
|
|
dtype = next(iter(model.parameters())).dtype |
|
inps = torch.zeros((args.nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev) |
|
cache = {'i': 0, 'attention_mask': None} |
|
|
|
class Catcher(nn.Module): |
|
|
|
def __init__(self, module): |
|
super().__init__() |
|
self.module = module |
|
|
|
def forward(self, inp, **kwargs): |
|
inps[cache['i']] = inp |
|
cache['i'] += 1 |
|
cache['attention_mask'] = kwargs['attention_mask'] |
|
cache['position_ids'] = kwargs['position_ids'] |
|
raise ValueError |
|
|
|
layers[0] = Catcher(layers[0]) |
|
for batch in dataloader: |
|
try: |
|
model(batch[0].to(dev)) |
|
except ValueError: |
|
pass |
|
layers[0] = layers[0].module |
|
|
|
layers[0] = layers[0].cpu() |
|
model.model.embed_tokens = model.model.embed_tokens.cpu() |
|
model.model.norm = model.model.norm.cpu() |
|
torch.cuda.empty_cache() |
|
|
|
outs = torch.zeros_like(inps) |
|
attention_mask = cache['attention_mask'] |
|
position_ids = cache['position_ids'] |
|
|
|
print('Ready.') |
|
|
|
quantizers = {} |
|
observer = Observer() |
|
for i in range(len(layers)): |
|
|
|
print(f'Quantizing layer {i+1}/{len(layers)}..') |
|
print('+------------------+--------------+------------+-----------+-------+') |
|
print('| name | weight_error | fp_inp_SNR | q_inp_SNR | time |') |
|
print('+==================+==============+============+===========+=======+') |
|
|
|
layer = layers[i].to(dev) |
|
full = find_layers(layer) |
|
if args.true_sequential: |
|
sequential = [['self_attn.k_proj', 'self_attn.v_proj', 'self_attn.q_proj'], ['self_attn.o_proj'], ['mlp.up_proj', 'mlp.gate_proj'], ['mlp.down_proj']] |
|
else: |
|
sequential = [list(full.keys())] |
|
|
|
for names in sequential: |
|
subset = {n: full[n] for n in names} |
|
gptq = {} |
|
for name in subset: |
|
gptq[name] = GPTQ(subset[name], observe=args.observe) |
|
gptq[name].quantizer.configure(args.wbits, perchannel=True, sym=args.sym, mse=False) |
|
|
|
def add_batch(name): |
|
|
|
def tmp(_, inp, out): |
|
gptq[name].add_batch(inp[0].data, out.data) |
|
|
|
return tmp |
|
|
|
handles = [] |
|
for name in subset: |
|
handles.append(subset[name].register_forward_hook(add_batch(name))) |
|
for j in range(args.nsamples): |
|
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0] |
|
for h in handles: |
|
h.remove() |
|
|
|
for name in subset: |
|
scale, zero, g_idx, error = gptq[name].fasterquant(percdamp=args.percdamp, groupsize=args.groupsize, actorder=args.act_order, name=name) |
|
quantizers['model.layers.%d.%s' % (i, name)] = (gptq[name].quantizer.cpu(), scale.cpu(), zero.cpu(), g_idx.cpu(), args.wbits, args.groupsize) |
|
|
|
if args.observe: |
|
observer.submit(name=name, layerid=i, gptq=gptq[name], error=error) |
|
else: |
|
gptq[name].free() |
|
|
|
for j in range(args.nsamples): |
|
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0] |
|
|
|
layers[i] = layer.cpu() |
|
del layer |
|
del gptq |
|
torch.cuda.empty_cache() |
|
|
|
inps, outs = outs, inps |
|
print('+------------------+--------------+------------+-----------+-------+') |
|
print('\n') |
|
|
|
if args.observe: |
|
observer.print() |
|
conditions = gen_conditions(args.wbits, args.groupsize) |
|
for item in observer.items(): |
|
name = item[0] |
|
layerid = item[1] |
|
gptq = item[2]['gptq'] |
|
error = item[2]['error'] |
|
target = error / 2 |
|
|
|
table = Texttable() |
|
table.header(['wbits', 'groupsize', 'error']) |
|
table.set_cols_dtype(['i', 'i', 'f']) |
|
table.add_row([args.wbits, args.groupsize, error]) |
|
|
|
print('Optimizing {} {} ..'.format(name, layerid)) |
|
for wbits, groupsize in conditions: |
|
|
|
if error < target: |
|
|
|
break |
|
|
|
gptq.quantizer.configure(wbits, perchannel=True, sym=args.sym, mse=False) |
|
|
|
scale, zero, g_idx, error = gptq.fasterquant(percdamp=args.percdamp, groupsize=groupsize, actorder=args.act_order, name=name) |
|
|
|
table.add_row([wbits, groupsize, error]) |
|
quantizers['model.layers.%d.%s' % (layerid, name)] = (gptq.quantizer.cpu(), scale.cpu(), zero.cpu(), g_idx.cpu(), wbits, groupsize) |
|
|
|
print(table.draw()) |
|
print('\n') |
|
gptq.layer.to('cpu') |
|
gptq.free() |
|
|
|
model.config.use_cache = use_cache |
|
|
|
return quantizers |
|
|
|
|
|
@torch.no_grad() |
|
def llama_eval(model, testenc, dev): |
|
print('Evaluating ...') |
|
|
|
testenc = testenc.input_ids |
|
nsamples = testenc.numel() // model.seqlen |
|
|
|
use_cache = model.config.use_cache |
|
model.config.use_cache = False |
|
layers = model.model.layers |
|
|
|
model.model.embed_tokens = model.model.embed_tokens.to(dev) |
|
layers[0] = layers[0].to(dev) |
|
|
|
dtype = next(iter(model.parameters())).dtype |
|
inps = torch.zeros((nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev) |
|
cache = {'i': 0, 'attention_mask': None} |
|
|
|
class Catcher(nn.Module): |
|
|
|
def __init__(self, module): |
|
super().__init__() |
|
self.module = module |
|
|
|
def forward(self, inp, **kwargs): |
|
inps[cache['i']] = inp |
|
cache['i'] += 1 |
|
cache['attention_mask'] = kwargs['attention_mask'] |
|
cache['position_ids'] = kwargs['position_ids'] |
|
raise ValueError |
|
|
|
layers[0] = Catcher(layers[0]) |
|
for i in range(nsamples): |
|
batch = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)].to(dev) |
|
try: |
|
model(batch) |
|
except ValueError: |
|
pass |
|
layers[0] = layers[0].module |
|
|
|
layers[0] = layers[0].cpu() |
|
model.model.embed_tokens = model.model.embed_tokens.cpu() |
|
torch.cuda.empty_cache() |
|
|
|
outs = torch.zeros_like(inps) |
|
attention_mask = cache['attention_mask'] |
|
position_ids = cache['position_ids'] |
|
|
|
for i in range(len(layers)): |
|
print(i) |
|
layer = layers[i].to(dev) |
|
|
|
if args.nearest: |
|
subset = find_layers(layer) |
|
for name in subset: |
|
quantizer = quant.Quantizer() |
|
quantizer.configure(args.wbits, perchannel=True, sym=args.sym, mse=False) |
|
W = subset[name].weight.data |
|
quantizer.find_params(W, weight=True) |
|
subset[name].weight.data = quantizer.quantize(W).to(next(iter(layer.parameters())).dtype) |
|
|
|
for j in range(nsamples): |
|
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0] |
|
layers[i] = layer.cpu() |
|
del layer |
|
torch.cuda.empty_cache() |
|
inps, outs = outs, inps |
|
|
|
if model.model.norm is not None: |
|
model.model.norm = model.model.norm.to(dev) |
|
model.lm_head = model.lm_head.to(dev) |
|
|
|
testenc = testenc.to(dev) |
|
nlls = [] |
|
for i in range(nsamples): |
|
hidden_states = inps[i].unsqueeze(0) |
|
if model.model.norm is not None: |
|
hidden_states = model.model.norm(hidden_states) |
|
lm_logits = model.lm_head(hidden_states) |
|
shift_logits = lm_logits[:, :-1, :].contiguous() |
|
shift_labels = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)][:, 1:] |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
neg_log_likelihood = loss.float() * model.seqlen |
|
nlls.append(neg_log_likelihood) |
|
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen)) |
|
print(ppl.item()) |
|
|
|
model.config.use_cache = use_cache |
|
|
|
|
|
|
|
def llama_pack(model, quantizers, wbits, groupsize): |
|
layers = find_layers(model) |
|
layers = {n: layers[n] for n in quantizers} |
|
quant.make_quant_linear(model, quantizers, wbits, groupsize) |
|
qlayers = find_layers(model, [quant.QuantLinear]) |
|
print('Packing ...') |
|
for name in qlayers: |
|
print(name) |
|
quantizers[name], scale, zero, g_idx, _, _ = quantizers[name] |
|
qlayers[name].pack(layers[name], scale, zero, g_idx) |
|
print('Done.') |
|
return model |
|
|
|
|
|
def load_quant(model, checkpoint, wbits, groupsize=-1, fused_mlp=True, eval=True, warmup_autotune=True): |
|
from transformers import LlamaConfig, LlamaForCausalLM, modeling_utils |
|
config = LlamaConfig.from_pretrained(model) |
|
|
|
def noop(*args, **kwargs): |
|
pass |
|
|
|
torch.nn.init.kaiming_uniform_ = noop |
|
torch.nn.init.uniform_ = noop |
|
torch.nn.init.normal_ = noop |
|
|
|
torch.set_default_dtype(torch.half) |
|
modeling_utils._init_weights = False |
|
torch.set_default_dtype(torch.half) |
|
model = LlamaForCausalLM(config) |
|
torch.set_default_dtype(torch.float) |
|
if eval: |
|
model = model.eval() |
|
layers = find_layers(model) |
|
for name in ['lm_head']: |
|
if name in layers: |
|
del layers[name] |
|
quant.make_quant_linear(model, layers, wbits, groupsize) |
|
|
|
del layers |
|
|
|
print('Loading model ...') |
|
if checkpoint.endswith('.safetensors'): |
|
from safetensors.torch import load_file as safe_load |
|
model.load_state_dict(safe_load(checkpoint)) |
|
else: |
|
model.load_state_dict(torch.load(checkpoint)) |
|
|
|
if eval: |
|
quant.make_quant_attn(model) |
|
quant.make_quant_norm(model) |
|
if fused_mlp: |
|
quant.make_fused_mlp(model) |
|
|
|
if warmup_autotune: |
|
quant.autotune_warmup_linear(model, transpose=not (eval)) |
|
if eval and fused_mlp: |
|
quant.autotune_warmup_fused(model) |
|
model.seqlen = 2048 |
|
print('Done.') |
|
|
|
return model |
|
|
|
|
|
def llama_multigpu(model, gpus, gpu_dist): |
|
model.model.embed_tokens = model.model.embed_tokens.to(gpus[0]) |
|
if hasattr(model.model, 'norm') and model.model.norm: |
|
model.model.norm = model.model.norm.to(gpus[-1]) |
|
import copy |
|
model.lm_head = copy.deepcopy(model.lm_head).to(gpus[-1]) |
|
|
|
cache = {'mask': None} |
|
|
|
class MoveModule(nn.Module): |
|
|
|
def __init__(self, module): |
|
super().__init__() |
|
self.module = module |
|
self.dev = next(iter(self.module.parameters())).device |
|
|
|
def forward(self, *inp, **kwargs): |
|
inp = list(inp) |
|
if inp[0].device != self.dev: |
|
inp[0] = inp[0].to(self.dev) |
|
if cache['mask'] is None or cache['mask'].device != self.dev: |
|
cache['mask'] = kwargs['attention_mask'].to(self.dev) |
|
kwargs['attention_mask'] = cache['mask'] |
|
tmp = self.module(*inp, **kwargs) |
|
return tmp |
|
|
|
layers = model.model.layers |
|
from math import ceil |
|
if not gpu_dist: |
|
pergpu = ceil(len(layers) / len(gpus)) |
|
for i in range(len(layers)): |
|
layers[i] = MoveModule(layers[i].to(gpus[i // pergpu])) |
|
else: |
|
assigned_gpus = [] |
|
for i in range(len(gpu_dist)): |
|
assigned_gpus = assigned_gpus + [i] * gpu_dist[i] |
|
|
|
remaining_assignments = len(layers)-len(assigned_gpus) |
|
if remaining_assignments > 0: |
|
assigned_gpus = assigned_gpus + [-1] * remaining_assignments |
|
|
|
for i in range(len(layers)): |
|
layers[i] = MoveModule(layers[i].to(gpus[assigned_gpus[i]])) |
|
|
|
model.gpus = gpus |
|
|
|
|
|
def benchmark(model, input_ids, check=False): |
|
input_ids = input_ids.to(model.gpus[0] if hasattr(model, 'gpus') else DEV) |
|
torch.cuda.synchronize() |
|
|
|
cache = {'past': None} |
|
|
|
def clear_past(i): |
|
|
|
def tmp(layer, inp, out): |
|
if cache['past']: |
|
cache['past'][i] = None |
|
|
|
return tmp |
|
|
|
for i, layer in enumerate(model.model.layers): |
|
layer.register_forward_hook(clear_past(i)) |
|
|
|
print('Benchmarking ...') |
|
|
|
if check: |
|
loss = nn.CrossEntropyLoss() |
|
tot = 0. |
|
|
|
def sync(): |
|
if hasattr(model, 'gpus'): |
|
for gpu in model.gpus: |
|
torch.cuda.synchronize(gpu) |
|
else: |
|
torch.cuda.synchronize() |
|
|
|
max_memory = 0 |
|
with torch.no_grad(): |
|
attention_mask = torch.ones((1, input_ids.numel()), device=DEV) |
|
times = [] |
|
for i in range(input_ids.numel()): |
|
tick = time.time() |
|
out = model(input_ids[:, i:i + 1], past_key_values=cache['past'], attention_mask=attention_mask[:, :(i + 1)].reshape((1, -1))) |
|
sync() |
|
times.append(time.time() - tick) |
|
print(i, times[-1]) |
|
if hasattr(model, 'gpus'): |
|
mem_allocated = sum(torch.cuda.memory_allocated(gpu) for gpu in model.gpus) / 1024 / 1024 |
|
else: |
|
mem_allocated = torch.cuda.memory_allocated() / 1024 / 1024 |
|
max_memory = max(max_memory, mem_allocated) |
|
if check and i != input_ids.numel() - 1: |
|
tot += loss(out.logits[0].to(DEV), input_ids[:, (i + 1)].to(DEV)).float() |
|
cache['past'] = list(out.past_key_values) |
|
del out |
|
sync() |
|
print('Median:', np.median(times)) |
|
if check: |
|
print('PPL:', torch.exp(tot / (input_ids.numel() - 1)).item()) |
|
print('max memory(MiB):', max_memory) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('model', type=str, help='llama model to load') |
|
parser.add_argument('dataset', type=str, choices=['wikitext2', 'ptb', 'c4'], help='Where to extract calibration data from.') |
|
parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.') |
|
parser.add_argument('--nsamples', type=int, default=128, help='Number of calibration data samples.') |
|
parser.add_argument('--percdamp', type=float, default=.01, help='Percent of the average Hessian diagonal to use for dampening.') |
|
parser.add_argument('--nearest', action='store_true', help='Whether to run the RTN baseline.') |
|
parser.add_argument('--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16], help='#bits to use for quantization; use 16 for evaluating base model.') |
|
parser.add_argument('--trits', action='store_true', help='Whether to use trits for quantization.') |
|
parser.add_argument('--groupsize', type=int, default=-1, help='Groupsize to use for quantization; default uses full row.') |
|
parser.add_argument('--eval', action='store_true', help='evaluate quantized model.') |
|
parser.add_argument('--save', type=str, default='', help='Save quantized checkpoint under this name.') |
|
parser.add_argument('--save_safetensors', type=str, default='', help='Save quantized `.safetensors` checkpoint under this name.') |
|
parser.add_argument('--load', type=str, default='', help='Load quantized model.') |
|
parser.add_argument('--benchmark', type=int, default=0, help='Number of tokens to use for benchmarking.') |
|
parser.add_argument('--check', action='store_true', help='Whether to compute perplexity during benchmarking for verification.') |
|
parser.add_argument('--sym', action='store_true', help='Whether to perform symmetric quantization.') |
|
parser.add_argument('--act-order', action='store_true', help='Whether to apply the activation order GPTQ heuristic') |
|
parser.add_argument('--true-sequential', action='store_true', help='Whether to run in true sequential model.') |
|
parser.add_argument('--new-eval', action='store_true', help='Whether to use the new PTB and C4 eval') |
|
parser.add_argument('--layers-dist', type=str, default='', help='Distribution of layers across GPUs. e.g. 2:1:1 for 2 layers on GPU 0, 1 layer on GPU 1, and 1 layer on GPU 2. Any remaining layers will be assigned to your last GPU.') |
|
parser.add_argument('--observe', |
|
action='store_true', |
|
help='Auto upgrade layer precision to higher precision, for example int2 to int4, groupsize 128 to 64. \ |
|
When this feature enabled, `--save` or `--save_safetensors` would be disable.') |
|
parser.add_argument('--quant-directory', type=str, default=None, help='Specify the directory for export quantization parameters to toml format. `None` means no export by default.') |
|
|
|
args = parser.parse_args() |
|
|
|
if args.layers_dist: |
|
gpu_dist = [int(x) for x in args.layers_dist.split(':')] |
|
else: |
|
gpu_dist = [] |
|
|
|
if type(args.load) is not str: |
|
args.load = args.load.as_posix() |
|
|
|
if args.load: |
|
model = load_quant(args.model, args.load, args.wbits, args.groupsize) |
|
else: |
|
model = get_llama(args.model) |
|
model.eval() |
|
|
|
dataloader, testloader = get_loaders(args.dataset, nsamples=args.nsamples, seed=args.seed, model=args.model, seqlen=model.seqlen) |
|
|
|
if not args.load and args.wbits < 16 and not args.nearest: |
|
tick = time.time() |
|
quantizers = llama_sequential(model, dataloader, DEV) |
|
print(time.time() - tick) |
|
|
|
if args.benchmark: |
|
gpus = [torch.device('cuda:%d' % i) for i in range(torch.cuda.device_count())] |
|
if len(gpus) > 1: |
|
llama_multigpu(model, gpus, gpu_dist) |
|
else: |
|
model = model.to(DEV) |
|
if args.benchmark: |
|
input_ids = next(iter(dataloader))[0][:, :args.benchmark] |
|
benchmark(model, input_ids, check=args.check) |
|
|
|
if args.eval: |
|
datasets = ['wikitext2', 'ptb', 'c4'] |
|
if args.new_eval: |
|
datasets = ['wikitext2', 'ptb-new', 'c4-new'] |
|
for dataset in datasets: |
|
dataloader, testloader = get_loaders(dataset, seed=args.seed, model=args.model, seqlen=model.seqlen) |
|
print(dataset) |
|
llama_eval(model, testloader, DEV) |
|
|
|
if args.quant_directory is not None: |
|
export_quant_table(quantizers, args.quant_directory) |
|
|
|
if not args.observe and args.save: |
|
llama_pack(model, quantizers, args.wbits, args.groupsize) |
|
torch.save(model.state_dict(), args.save) |
|
|
|
if not args.observe and args.save_safetensors: |
|
llama_pack(model, quantizers, args.wbits, args.groupsize) |
|
from safetensors.torch import save_file as safe_save |
|
state_dict = model.state_dict() |
|
state_dict = {k: v.clone().contiguous() for k, v in state_dict.items()} |
|
safe_save(state_dict, args.save_safetensors) |
|
|