stefan-it's picture
Upload ./training.log with huggingface_hub
cdbbfa7
raw
history blame
25.5 kB
2023-10-19 03:02:32,455 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,456 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=81, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-19 03:02:32,456 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,457 Corpus: 6900 train + 1576 dev + 1833 test sentences
2023-10-19 03:02:32,457 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,457 Train: 6900 sentences
2023-10-19 03:02:32,457 (train_with_dev=False, train_with_test=False)
2023-10-19 03:02:32,457 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,457 Training Params:
2023-10-19 03:02:32,457 - learning_rate: "3e-05"
2023-10-19 03:02:32,457 - mini_batch_size: "16"
2023-10-19 03:02:32,457 - max_epochs: "10"
2023-10-19 03:02:32,457 - shuffle: "True"
2023-10-19 03:02:32,457 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,457 Plugins:
2023-10-19 03:02:32,457 - TensorboardLogger
2023-10-19 03:02:32,457 - LinearScheduler | warmup_fraction: '0.1'
2023-10-19 03:02:32,457 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,457 Final evaluation on model from best epoch (best-model.pt)
2023-10-19 03:02:32,458 - metric: "('micro avg', 'f1-score')"
2023-10-19 03:02:32,458 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,458 Computation:
2023-10-19 03:02:32,458 - compute on device: cuda:0
2023-10-19 03:02:32,458 - embedding storage: none
2023-10-19 03:02:32,458 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,458 Model training base path: "autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-5"
2023-10-19 03:02:32,458 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,458 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,458 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-19 03:02:45,358 epoch 1 - iter 43/432 - loss 4.68092903 - time (sec): 12.90 - samples/sec: 472.22 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:02:59,668 epoch 1 - iter 86/432 - loss 3.80733117 - time (sec): 27.21 - samples/sec: 458.56 - lr: 0.000006 - momentum: 0.000000
2023-10-19 03:03:13,521 epoch 1 - iter 129/432 - loss 3.15933165 - time (sec): 41.06 - samples/sec: 465.39 - lr: 0.000009 - momentum: 0.000000
2023-10-19 03:03:26,787 epoch 1 - iter 172/432 - loss 2.80639142 - time (sec): 54.33 - samples/sec: 460.04 - lr: 0.000012 - momentum: 0.000000
2023-10-19 03:03:40,465 epoch 1 - iter 215/432 - loss 2.50948460 - time (sec): 68.01 - samples/sec: 458.64 - lr: 0.000015 - momentum: 0.000000
2023-10-19 03:03:53,954 epoch 1 - iter 258/432 - loss 2.29011944 - time (sec): 81.50 - samples/sec: 460.98 - lr: 0.000018 - momentum: 0.000000
2023-10-19 03:04:07,705 epoch 1 - iter 301/432 - loss 2.09775363 - time (sec): 95.25 - samples/sec: 459.80 - lr: 0.000021 - momentum: 0.000000
2023-10-19 03:04:21,038 epoch 1 - iter 344/432 - loss 1.95000051 - time (sec): 108.58 - samples/sec: 459.19 - lr: 0.000024 - momentum: 0.000000
2023-10-19 03:04:34,393 epoch 1 - iter 387/432 - loss 1.83143150 - time (sec): 121.93 - samples/sec: 456.61 - lr: 0.000027 - momentum: 0.000000
2023-10-19 03:04:48,237 epoch 1 - iter 430/432 - loss 1.71866002 - time (sec): 135.78 - samples/sec: 453.10 - lr: 0.000030 - momentum: 0.000000
2023-10-19 03:04:48,835 ----------------------------------------------------------------------------------------------------
2023-10-19 03:04:48,835 EPOCH 1 done: loss 1.7140 - lr: 0.000030
2023-10-19 03:05:01,077 DEV : loss 0.5552897453308105 - f1-score (micro avg) 0.6622
2023-10-19 03:05:01,101 saving best model
2023-10-19 03:05:01,517 ----------------------------------------------------------------------------------------------------
2023-10-19 03:05:15,028 epoch 2 - iter 43/432 - loss 0.60311222 - time (sec): 13.51 - samples/sec: 435.31 - lr: 0.000030 - momentum: 0.000000
2023-10-19 03:05:28,407 epoch 2 - iter 86/432 - loss 0.57492961 - time (sec): 26.89 - samples/sec: 450.97 - lr: 0.000029 - momentum: 0.000000
2023-10-19 03:05:42,437 epoch 2 - iter 129/432 - loss 0.57047978 - time (sec): 40.92 - samples/sec: 455.93 - lr: 0.000029 - momentum: 0.000000
2023-10-19 03:05:56,220 epoch 2 - iter 172/432 - loss 0.55732391 - time (sec): 54.70 - samples/sec: 450.69 - lr: 0.000029 - momentum: 0.000000
2023-10-19 03:06:10,611 epoch 2 - iter 215/432 - loss 0.53979872 - time (sec): 69.09 - samples/sec: 447.24 - lr: 0.000028 - momentum: 0.000000
2023-10-19 03:06:24,033 epoch 2 - iter 258/432 - loss 0.52406456 - time (sec): 82.51 - samples/sec: 452.59 - lr: 0.000028 - momentum: 0.000000
2023-10-19 03:06:38,941 epoch 2 - iter 301/432 - loss 0.51367307 - time (sec): 97.42 - samples/sec: 444.61 - lr: 0.000028 - momentum: 0.000000
2023-10-19 03:06:53,084 epoch 2 - iter 344/432 - loss 0.49754137 - time (sec): 111.57 - samples/sec: 443.70 - lr: 0.000027 - momentum: 0.000000
2023-10-19 03:07:07,204 epoch 2 - iter 387/432 - loss 0.48910598 - time (sec): 125.69 - samples/sec: 439.67 - lr: 0.000027 - momentum: 0.000000
2023-10-19 03:07:21,241 epoch 2 - iter 430/432 - loss 0.47410522 - time (sec): 139.72 - samples/sec: 441.12 - lr: 0.000027 - momentum: 0.000000
2023-10-19 03:07:21,774 ----------------------------------------------------------------------------------------------------
2023-10-19 03:07:21,774 EPOCH 2 done: loss 0.4748 - lr: 0.000027
2023-10-19 03:07:34,105 DEV : loss 0.3492853343486786 - f1-score (micro avg) 0.778
2023-10-19 03:07:34,129 saving best model
2023-10-19 03:07:35,382 ----------------------------------------------------------------------------------------------------
2023-10-19 03:07:49,725 epoch 3 - iter 43/432 - loss 0.32742202 - time (sec): 14.34 - samples/sec: 440.94 - lr: 0.000026 - momentum: 0.000000
2023-10-19 03:08:03,255 epoch 3 - iter 86/432 - loss 0.31063739 - time (sec): 27.87 - samples/sec: 437.58 - lr: 0.000026 - momentum: 0.000000
2023-10-19 03:08:18,407 epoch 3 - iter 129/432 - loss 0.31037428 - time (sec): 43.02 - samples/sec: 428.23 - lr: 0.000026 - momentum: 0.000000
2023-10-19 03:08:32,878 epoch 3 - iter 172/432 - loss 0.30284596 - time (sec): 57.49 - samples/sec: 425.34 - lr: 0.000025 - momentum: 0.000000
2023-10-19 03:08:47,535 epoch 3 - iter 215/432 - loss 0.29952088 - time (sec): 72.15 - samples/sec: 425.09 - lr: 0.000025 - momentum: 0.000000
2023-10-19 03:09:02,921 epoch 3 - iter 258/432 - loss 0.29399153 - time (sec): 87.54 - samples/sec: 423.60 - lr: 0.000025 - momentum: 0.000000
2023-10-19 03:09:17,555 epoch 3 - iter 301/432 - loss 0.29404747 - time (sec): 102.17 - samples/sec: 423.61 - lr: 0.000024 - momentum: 0.000000
2023-10-19 03:09:32,378 epoch 3 - iter 344/432 - loss 0.29589502 - time (sec): 116.99 - samples/sec: 424.08 - lr: 0.000024 - momentum: 0.000000
2023-10-19 03:09:46,405 epoch 3 - iter 387/432 - loss 0.29720740 - time (sec): 131.02 - samples/sec: 424.71 - lr: 0.000024 - momentum: 0.000000
2023-10-19 03:10:01,246 epoch 3 - iter 430/432 - loss 0.29631246 - time (sec): 145.86 - samples/sec: 422.71 - lr: 0.000023 - momentum: 0.000000
2023-10-19 03:10:01,690 ----------------------------------------------------------------------------------------------------
2023-10-19 03:10:01,690 EPOCH 3 done: loss 0.2959 - lr: 0.000023
2023-10-19 03:10:14,851 DEV : loss 0.3259921371936798 - f1-score (micro avg) 0.7982
2023-10-19 03:10:14,875 saving best model
2023-10-19 03:10:16,119 ----------------------------------------------------------------------------------------------------
2023-10-19 03:10:31,459 epoch 4 - iter 43/432 - loss 0.20672208 - time (sec): 15.34 - samples/sec: 401.20 - lr: 0.000023 - momentum: 0.000000
2023-10-19 03:10:46,531 epoch 4 - iter 86/432 - loss 0.19852246 - time (sec): 30.41 - samples/sec: 418.47 - lr: 0.000023 - momentum: 0.000000
2023-10-19 03:11:00,882 epoch 4 - iter 129/432 - loss 0.19616414 - time (sec): 44.76 - samples/sec: 421.57 - lr: 0.000022 - momentum: 0.000000
2023-10-19 03:11:14,827 epoch 4 - iter 172/432 - loss 0.20627791 - time (sec): 58.71 - samples/sec: 424.33 - lr: 0.000022 - momentum: 0.000000
2023-10-19 03:11:29,748 epoch 4 - iter 215/432 - loss 0.21224683 - time (sec): 73.63 - samples/sec: 421.12 - lr: 0.000022 - momentum: 0.000000
2023-10-19 03:11:43,731 epoch 4 - iter 258/432 - loss 0.21227075 - time (sec): 87.61 - samples/sec: 424.32 - lr: 0.000021 - momentum: 0.000000
2023-10-19 03:11:58,975 epoch 4 - iter 301/432 - loss 0.21292796 - time (sec): 102.85 - samples/sec: 419.09 - lr: 0.000021 - momentum: 0.000000
2023-10-19 03:12:13,655 epoch 4 - iter 344/432 - loss 0.21307796 - time (sec): 117.54 - samples/sec: 418.07 - lr: 0.000021 - momentum: 0.000000
2023-10-19 03:12:29,419 epoch 4 - iter 387/432 - loss 0.21476478 - time (sec): 133.30 - samples/sec: 413.81 - lr: 0.000020 - momentum: 0.000000
2023-10-19 03:12:44,470 epoch 4 - iter 430/432 - loss 0.21820196 - time (sec): 148.35 - samples/sec: 414.61 - lr: 0.000020 - momentum: 0.000000
2023-10-19 03:12:44,864 ----------------------------------------------------------------------------------------------------
2023-10-19 03:12:44,864 EPOCH 4 done: loss 0.2178 - lr: 0.000020
2023-10-19 03:12:58,149 DEV : loss 0.2954443395137787 - f1-score (micro avg) 0.8237
2023-10-19 03:12:58,173 saving best model
2023-10-19 03:12:59,444 ----------------------------------------------------------------------------------------------------
2023-10-19 03:13:15,154 epoch 5 - iter 43/432 - loss 0.15390087 - time (sec): 15.71 - samples/sec: 415.14 - lr: 0.000020 - momentum: 0.000000
2023-10-19 03:13:30,869 epoch 5 - iter 86/432 - loss 0.15550679 - time (sec): 31.42 - samples/sec: 403.88 - lr: 0.000019 - momentum: 0.000000
2023-10-19 03:13:45,378 epoch 5 - iter 129/432 - loss 0.15604865 - time (sec): 45.93 - samples/sec: 402.33 - lr: 0.000019 - momentum: 0.000000
2023-10-19 03:14:00,384 epoch 5 - iter 172/432 - loss 0.15506530 - time (sec): 60.94 - samples/sec: 408.22 - lr: 0.000019 - momentum: 0.000000
2023-10-19 03:14:14,455 epoch 5 - iter 215/432 - loss 0.15758901 - time (sec): 75.01 - samples/sec: 410.23 - lr: 0.000018 - momentum: 0.000000
2023-10-19 03:14:29,344 epoch 5 - iter 258/432 - loss 0.15953645 - time (sec): 89.90 - samples/sec: 411.80 - lr: 0.000018 - momentum: 0.000000
2023-10-19 03:14:44,219 epoch 5 - iter 301/432 - loss 0.15917566 - time (sec): 104.77 - samples/sec: 409.05 - lr: 0.000018 - momentum: 0.000000
2023-10-19 03:14:59,634 epoch 5 - iter 344/432 - loss 0.15850960 - time (sec): 120.19 - samples/sec: 409.33 - lr: 0.000017 - momentum: 0.000000
2023-10-19 03:15:15,342 epoch 5 - iter 387/432 - loss 0.16067848 - time (sec): 135.90 - samples/sec: 407.33 - lr: 0.000017 - momentum: 0.000000
2023-10-19 03:15:29,540 epoch 5 - iter 430/432 - loss 0.16521243 - time (sec): 150.09 - samples/sec: 410.51 - lr: 0.000017 - momentum: 0.000000
2023-10-19 03:15:30,009 ----------------------------------------------------------------------------------------------------
2023-10-19 03:15:30,010 EPOCH 5 done: loss 0.1649 - lr: 0.000017
2023-10-19 03:15:43,137 DEV : loss 0.3015434145927429 - f1-score (micro avg) 0.8299
2023-10-19 03:15:43,162 saving best model
2023-10-19 03:15:44,425 ----------------------------------------------------------------------------------------------------
2023-10-19 03:15:58,770 epoch 6 - iter 43/432 - loss 0.13202038 - time (sec): 14.34 - samples/sec: 417.18 - lr: 0.000016 - momentum: 0.000000
2023-10-19 03:16:13,650 epoch 6 - iter 86/432 - loss 0.12553836 - time (sec): 29.22 - samples/sec: 407.79 - lr: 0.000016 - momentum: 0.000000
2023-10-19 03:16:28,364 epoch 6 - iter 129/432 - loss 0.12939794 - time (sec): 43.94 - samples/sec: 417.91 - lr: 0.000016 - momentum: 0.000000
2023-10-19 03:16:42,571 epoch 6 - iter 172/432 - loss 0.12769753 - time (sec): 58.14 - samples/sec: 425.46 - lr: 0.000015 - momentum: 0.000000
2023-10-19 03:16:56,766 epoch 6 - iter 215/432 - loss 0.12873983 - time (sec): 72.34 - samples/sec: 426.63 - lr: 0.000015 - momentum: 0.000000
2023-10-19 03:17:11,198 epoch 6 - iter 258/432 - loss 0.13206339 - time (sec): 86.77 - samples/sec: 424.89 - lr: 0.000015 - momentum: 0.000000
2023-10-19 03:17:25,555 epoch 6 - iter 301/432 - loss 0.12993628 - time (sec): 101.13 - samples/sec: 422.61 - lr: 0.000014 - momentum: 0.000000
2023-10-19 03:17:38,273 epoch 6 - iter 344/432 - loss 0.13004768 - time (sec): 113.85 - samples/sec: 431.76 - lr: 0.000014 - momentum: 0.000000
2023-10-19 03:17:52,227 epoch 6 - iter 387/432 - loss 0.13032000 - time (sec): 127.80 - samples/sec: 434.94 - lr: 0.000014 - momentum: 0.000000
2023-10-19 03:18:05,986 epoch 6 - iter 430/432 - loss 0.13151672 - time (sec): 141.56 - samples/sec: 435.39 - lr: 0.000013 - momentum: 0.000000
2023-10-19 03:18:06,429 ----------------------------------------------------------------------------------------------------
2023-10-19 03:18:06,429 EPOCH 6 done: loss 0.1313 - lr: 0.000013
2023-10-19 03:18:18,383 DEV : loss 0.3147521913051605 - f1-score (micro avg) 0.837
2023-10-19 03:18:18,407 saving best model
2023-10-19 03:18:19,654 ----------------------------------------------------------------------------------------------------
2023-10-19 03:18:33,965 epoch 7 - iter 43/432 - loss 0.09978456 - time (sec): 14.31 - samples/sec: 439.36 - lr: 0.000013 - momentum: 0.000000
2023-10-19 03:18:47,773 epoch 7 - iter 86/432 - loss 0.10425709 - time (sec): 28.12 - samples/sec: 442.24 - lr: 0.000013 - momentum: 0.000000
2023-10-19 03:19:01,199 epoch 7 - iter 129/432 - loss 0.10081928 - time (sec): 41.54 - samples/sec: 444.14 - lr: 0.000012 - momentum: 0.000000
2023-10-19 03:19:15,447 epoch 7 - iter 172/432 - loss 0.10228024 - time (sec): 55.79 - samples/sec: 445.10 - lr: 0.000012 - momentum: 0.000000
2023-10-19 03:19:28,556 epoch 7 - iter 215/432 - loss 0.09910047 - time (sec): 68.90 - samples/sec: 447.41 - lr: 0.000012 - momentum: 0.000000
2023-10-19 03:19:42,583 epoch 7 - iter 258/432 - loss 0.09892292 - time (sec): 82.93 - samples/sec: 445.88 - lr: 0.000011 - momentum: 0.000000
2023-10-19 03:19:56,325 epoch 7 - iter 301/432 - loss 0.09965975 - time (sec): 96.67 - samples/sec: 450.23 - lr: 0.000011 - momentum: 0.000000
2023-10-19 03:20:09,811 epoch 7 - iter 344/432 - loss 0.10180121 - time (sec): 110.16 - samples/sec: 449.26 - lr: 0.000011 - momentum: 0.000000
2023-10-19 03:20:23,439 epoch 7 - iter 387/432 - loss 0.10327251 - time (sec): 123.78 - samples/sec: 447.78 - lr: 0.000010 - momentum: 0.000000
2023-10-19 03:20:37,405 epoch 7 - iter 430/432 - loss 0.10270499 - time (sec): 137.75 - samples/sec: 448.10 - lr: 0.000010 - momentum: 0.000000
2023-10-19 03:20:38,070 ----------------------------------------------------------------------------------------------------
2023-10-19 03:20:38,070 EPOCH 7 done: loss 0.1030 - lr: 0.000010
2023-10-19 03:20:50,296 DEV : loss 0.3245373070240021 - f1-score (micro avg) 0.8369
2023-10-19 03:20:50,321 ----------------------------------------------------------------------------------------------------
2023-10-19 03:21:03,617 epoch 8 - iter 43/432 - loss 0.08836329 - time (sec): 13.30 - samples/sec: 459.56 - lr: 0.000010 - momentum: 0.000000
2023-10-19 03:21:18,106 epoch 8 - iter 86/432 - loss 0.08588265 - time (sec): 27.78 - samples/sec: 423.45 - lr: 0.000009 - momentum: 0.000000
2023-10-19 03:21:32,684 epoch 8 - iter 129/432 - loss 0.08683372 - time (sec): 42.36 - samples/sec: 424.46 - lr: 0.000009 - momentum: 0.000000
2023-10-19 03:21:46,306 epoch 8 - iter 172/432 - loss 0.08510177 - time (sec): 55.98 - samples/sec: 440.66 - lr: 0.000009 - momentum: 0.000000
2023-10-19 03:21:59,965 epoch 8 - iter 215/432 - loss 0.08335334 - time (sec): 69.64 - samples/sec: 439.41 - lr: 0.000008 - momentum: 0.000000
2023-10-19 03:22:13,850 epoch 8 - iter 258/432 - loss 0.08326947 - time (sec): 83.53 - samples/sec: 439.89 - lr: 0.000008 - momentum: 0.000000
2023-10-19 03:22:28,357 epoch 8 - iter 301/432 - loss 0.08295965 - time (sec): 98.03 - samples/sec: 438.39 - lr: 0.000008 - momentum: 0.000000
2023-10-19 03:22:42,156 epoch 8 - iter 344/432 - loss 0.08364151 - time (sec): 111.83 - samples/sec: 440.99 - lr: 0.000007 - momentum: 0.000000
2023-10-19 03:22:55,572 epoch 8 - iter 387/432 - loss 0.08380031 - time (sec): 125.25 - samples/sec: 443.16 - lr: 0.000007 - momentum: 0.000000
2023-10-19 03:23:09,667 epoch 8 - iter 430/432 - loss 0.08256002 - time (sec): 139.34 - samples/sec: 442.31 - lr: 0.000007 - momentum: 0.000000
2023-10-19 03:23:10,370 ----------------------------------------------------------------------------------------------------
2023-10-19 03:23:10,370 EPOCH 8 done: loss 0.0828 - lr: 0.000007
2023-10-19 03:23:22,392 DEV : loss 0.34586212038993835 - f1-score (micro avg) 0.8435
2023-10-19 03:23:22,416 saving best model
2023-10-19 03:23:24,523 ----------------------------------------------------------------------------------------------------
2023-10-19 03:23:37,690 epoch 9 - iter 43/432 - loss 0.06404456 - time (sec): 13.17 - samples/sec: 467.43 - lr: 0.000006 - momentum: 0.000000
2023-10-19 03:23:51,542 epoch 9 - iter 86/432 - loss 0.06912955 - time (sec): 27.02 - samples/sec: 463.82 - lr: 0.000006 - momentum: 0.000000
2023-10-19 03:24:04,557 epoch 9 - iter 129/432 - loss 0.06602599 - time (sec): 40.03 - samples/sec: 469.64 - lr: 0.000006 - momentum: 0.000000
2023-10-19 03:24:18,441 epoch 9 - iter 172/432 - loss 0.06580031 - time (sec): 53.92 - samples/sec: 468.30 - lr: 0.000005 - momentum: 0.000000
2023-10-19 03:24:32,240 epoch 9 - iter 215/432 - loss 0.06730200 - time (sec): 67.71 - samples/sec: 458.39 - lr: 0.000005 - momentum: 0.000000
2023-10-19 03:24:45,981 epoch 9 - iter 258/432 - loss 0.06853445 - time (sec): 81.46 - samples/sec: 456.87 - lr: 0.000005 - momentum: 0.000000
2023-10-19 03:24:59,976 epoch 9 - iter 301/432 - loss 0.06801088 - time (sec): 95.45 - samples/sec: 454.91 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:25:13,563 epoch 9 - iter 344/432 - loss 0.06752770 - time (sec): 109.04 - samples/sec: 453.30 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:25:27,798 epoch 9 - iter 387/432 - loss 0.06815869 - time (sec): 123.27 - samples/sec: 450.85 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:25:41,524 epoch 9 - iter 430/432 - loss 0.06769484 - time (sec): 137.00 - samples/sec: 449.74 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:25:41,970 ----------------------------------------------------------------------------------------------------
2023-10-19 03:25:41,971 EPOCH 9 done: loss 0.0678 - lr: 0.000003
2023-10-19 03:25:54,505 DEV : loss 0.35387569665908813 - f1-score (micro avg) 0.8449
2023-10-19 03:25:54,530 saving best model
2023-10-19 03:25:55,769 ----------------------------------------------------------------------------------------------------
2023-10-19 03:26:08,762 epoch 10 - iter 43/432 - loss 0.05227225 - time (sec): 12.99 - samples/sec: 462.56 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:26:22,942 epoch 10 - iter 86/432 - loss 0.05341720 - time (sec): 27.17 - samples/sec: 438.15 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:26:35,887 epoch 10 - iter 129/432 - loss 0.05487206 - time (sec): 40.12 - samples/sec: 454.00 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:26:50,149 epoch 10 - iter 172/432 - loss 0.05596544 - time (sec): 54.38 - samples/sec: 461.20 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:27:03,985 epoch 10 - iter 215/432 - loss 0.05733517 - time (sec): 68.21 - samples/sec: 458.73 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:27:17,924 epoch 10 - iter 258/432 - loss 0.05765922 - time (sec): 82.15 - samples/sec: 454.50 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:27:30,964 epoch 10 - iter 301/432 - loss 0.05769597 - time (sec): 95.19 - samples/sec: 455.32 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:27:45,282 epoch 10 - iter 344/432 - loss 0.05926565 - time (sec): 109.51 - samples/sec: 453.13 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:27:59,510 epoch 10 - iter 387/432 - loss 0.05821429 - time (sec): 123.74 - samples/sec: 448.10 - lr: 0.000000 - momentum: 0.000000
2023-10-19 03:28:12,650 epoch 10 - iter 430/432 - loss 0.05761600 - time (sec): 136.88 - samples/sec: 450.35 - lr: 0.000000 - momentum: 0.000000
2023-10-19 03:28:13,196 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:13,196 EPOCH 10 done: loss 0.0576 - lr: 0.000000
2023-10-19 03:28:25,462 DEV : loss 0.3606269955635071 - f1-score (micro avg) 0.841
2023-10-19 03:28:25,916 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:25,917 Loading model from best epoch ...
2023-10-19 03:28:28,137 SequenceTagger predicts: Dictionary with 81 tags: O, S-location-route, B-location-route, E-location-route, I-location-route, S-location-stop, B-location-stop, E-location-stop, I-location-stop, S-trigger, B-trigger, E-trigger, I-trigger, S-organization-company, B-organization-company, E-organization-company, I-organization-company, S-location-city, B-location-city, E-location-city, I-location-city, S-location, B-location, E-location, I-location, S-event-cause, B-event-cause, E-event-cause, I-event-cause, S-location-street, B-location-street, E-location-street, I-location-street, S-time, B-time, E-time, I-time, S-date, B-date, E-date, I-date, S-number, B-number, E-number, I-number, S-duration, B-duration, E-duration, I-duration, S-organization
2023-10-19 03:28:44,997
Results:
- F-score (micro) 0.7571
- F-score (macro) 0.5822
- Accuracy 0.6503
By class:
precision recall f1-score support
trigger 0.6612 0.5342 0.5910 833
location-stop 0.8622 0.8340 0.8478 765
location 0.7932 0.8421 0.8169 665
location-city 0.8075 0.8746 0.8397 566
date 0.8753 0.8376 0.8560 394
location-street 0.9339 0.8782 0.9052 386
time 0.7917 0.8906 0.8382 256
location-route 0.8205 0.6761 0.7413 284
organization-company 0.7867 0.7024 0.7421 252
distance 0.9824 1.0000 0.9911 167
number 0.6776 0.8322 0.7470 149
duration 0.3636 0.3436 0.3533 163
event-cause 0.0000 0.0000 0.0000 0
disaster-type 0.8788 0.4203 0.5686 69
organization 0.5185 0.5000 0.5091 28
person 0.5556 1.0000 0.7143 10
set 0.0000 0.0000 0.0000 0
org-position 0.0000 0.0000 0.0000 1
money 0.0000 0.0000 0.0000 0
micro avg 0.7516 0.7626 0.7571 4988
macro avg 0.5952 0.5877 0.5822 4988
weighted avg 0.7897 0.7626 0.7725 4988
2023-10-19 03:28:44,997 ----------------------------------------------------------------------------------------------------