|
2023-10-17 15:58:59,059 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:59,061 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): ElectraModel( |
|
(embeddings): ElectraEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): ElectraEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x ElectraLayer( |
|
(attention): ElectraAttention( |
|
(self): ElectraSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): ElectraSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): ElectraIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): ElectraOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=21, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-17 15:58:59,061 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:59,062 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences |
|
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator |
|
2023-10-17 15:58:59,062 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:59,062 Train: 3575 sentences |
|
2023-10-17 15:58:59,062 (train_with_dev=False, train_with_test=False) |
|
2023-10-17 15:58:59,062 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:59,062 Training Params: |
|
2023-10-17 15:58:59,062 - learning_rate: "3e-05" |
|
2023-10-17 15:58:59,062 - mini_batch_size: "8" |
|
2023-10-17 15:58:59,062 - max_epochs: "10" |
|
2023-10-17 15:58:59,062 - shuffle: "True" |
|
2023-10-17 15:58:59,062 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:59,062 Plugins: |
|
2023-10-17 15:58:59,063 - TensorboardLogger |
|
2023-10-17 15:58:59,063 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-17 15:58:59,063 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:59,063 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-17 15:58:59,063 - metric: "('micro avg', 'f1-score')" |
|
2023-10-17 15:58:59,063 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:59,063 Computation: |
|
2023-10-17 15:58:59,063 - compute on device: cuda:0 |
|
2023-10-17 15:58:59,063 - embedding storage: none |
|
2023-10-17 15:58:59,063 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:59,063 Model training base path: "hmbench-hipe2020/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2" |
|
2023-10-17 15:58:59,063 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:59,063 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:59,064 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-17 15:59:03,268 epoch 1 - iter 44/447 - loss 3.75328637 - time (sec): 4.20 - samples/sec: 2112.58 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 15:59:07,512 epoch 1 - iter 88/447 - loss 2.79174559 - time (sec): 8.45 - samples/sec: 2030.17 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 15:59:11,524 epoch 1 - iter 132/447 - loss 2.08551841 - time (sec): 12.46 - samples/sec: 1987.11 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 15:59:16,031 epoch 1 - iter 176/447 - loss 1.63894890 - time (sec): 16.97 - samples/sec: 2016.62 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 15:59:20,141 epoch 1 - iter 220/447 - loss 1.39670438 - time (sec): 21.08 - samples/sec: 2016.11 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 15:59:24,433 epoch 1 - iter 264/447 - loss 1.22305966 - time (sec): 25.37 - samples/sec: 2016.49 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 15:59:28,479 epoch 1 - iter 308/447 - loss 1.10231203 - time (sec): 29.41 - samples/sec: 2005.73 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 15:59:32,764 epoch 1 - iter 352/447 - loss 1.00085629 - time (sec): 33.70 - samples/sec: 2007.65 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 15:59:37,492 epoch 1 - iter 396/447 - loss 0.91299761 - time (sec): 38.43 - samples/sec: 2004.60 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 15:59:41,758 epoch 1 - iter 440/447 - loss 0.84847471 - time (sec): 42.69 - samples/sec: 2001.55 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 15:59:42,398 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:59:42,398 EPOCH 1 done: loss 0.8401 - lr: 0.000029 |
|
2023-10-17 15:59:49,299 DEV : loss 0.1743467152118683 - f1-score (micro avg) 0.5904 |
|
2023-10-17 15:59:49,362 saving best model |
|
2023-10-17 15:59:50,000 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:59:54,169 epoch 2 - iter 44/447 - loss 0.20202135 - time (sec): 4.17 - samples/sec: 2020.85 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 15:59:58,785 epoch 2 - iter 88/447 - loss 0.19013888 - time (sec): 8.78 - samples/sec: 2021.47 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 16:00:03,225 epoch 2 - iter 132/447 - loss 0.19608616 - time (sec): 13.22 - samples/sec: 1930.61 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 16:00:08,005 epoch 2 - iter 176/447 - loss 0.18596049 - time (sec): 18.00 - samples/sec: 1937.03 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 16:00:12,138 epoch 2 - iter 220/447 - loss 0.18035707 - time (sec): 22.13 - samples/sec: 1977.69 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 16:00:16,236 epoch 2 - iter 264/447 - loss 0.17461322 - time (sec): 26.23 - samples/sec: 1965.57 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 16:00:20,493 epoch 2 - iter 308/447 - loss 0.16847653 - time (sec): 30.49 - samples/sec: 1986.10 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 16:00:24,739 epoch 2 - iter 352/447 - loss 0.16607108 - time (sec): 34.74 - samples/sec: 1993.31 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 16:00:28,945 epoch 2 - iter 396/447 - loss 0.16349240 - time (sec): 38.94 - samples/sec: 1988.06 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 16:00:33,205 epoch 2 - iter 440/447 - loss 0.16613347 - time (sec): 43.20 - samples/sec: 1976.45 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 16:00:33,854 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:00:33,855 EPOCH 2 done: loss 0.1648 - lr: 0.000027 |
|
2023-10-17 16:00:45,420 DEV : loss 0.11944183707237244 - f1-score (micro avg) 0.7175 |
|
2023-10-17 16:00:45,481 saving best model |
|
2023-10-17 16:00:46,934 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:00:51,110 epoch 3 - iter 44/447 - loss 0.08131650 - time (sec): 4.17 - samples/sec: 1891.39 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 16:00:55,405 epoch 3 - iter 88/447 - loss 0.08702455 - time (sec): 8.47 - samples/sec: 1967.19 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 16:00:59,963 epoch 3 - iter 132/447 - loss 0.07972396 - time (sec): 13.02 - samples/sec: 1964.70 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 16:01:04,142 epoch 3 - iter 176/447 - loss 0.07975901 - time (sec): 17.20 - samples/sec: 1939.38 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 16:01:08,611 epoch 3 - iter 220/447 - loss 0.08247967 - time (sec): 21.67 - samples/sec: 1967.29 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 16:01:12,697 epoch 3 - iter 264/447 - loss 0.08537389 - time (sec): 25.76 - samples/sec: 1978.18 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 16:01:17,006 epoch 3 - iter 308/447 - loss 0.08411404 - time (sec): 30.07 - samples/sec: 1987.82 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 16:01:21,139 epoch 3 - iter 352/447 - loss 0.08280911 - time (sec): 34.20 - samples/sec: 1990.44 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 16:01:25,354 epoch 3 - iter 396/447 - loss 0.08456497 - time (sec): 38.42 - samples/sec: 1993.20 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 16:01:29,534 epoch 3 - iter 440/447 - loss 0.08638185 - time (sec): 42.60 - samples/sec: 1984.93 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 16:01:30,441 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:01:30,442 EPOCH 3 done: loss 0.0860 - lr: 0.000023 |
|
2023-10-17 16:01:41,799 DEV : loss 0.13438037037849426 - f1-score (micro avg) 0.7434 |
|
2023-10-17 16:01:41,855 saving best model |
|
2023-10-17 16:01:43,314 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:01:47,660 epoch 4 - iter 44/447 - loss 0.05444230 - time (sec): 4.34 - samples/sec: 2164.26 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 16:01:52,647 epoch 4 - iter 88/447 - loss 0.05193996 - time (sec): 9.33 - samples/sec: 2018.23 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 16:01:57,154 epoch 4 - iter 132/447 - loss 0.05306498 - time (sec): 13.83 - samples/sec: 1941.12 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 16:02:01,286 epoch 4 - iter 176/447 - loss 0.05252827 - time (sec): 17.97 - samples/sec: 1934.72 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 16:02:05,472 epoch 4 - iter 220/447 - loss 0.05261466 - time (sec): 22.15 - samples/sec: 1950.76 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 16:02:09,829 epoch 4 - iter 264/447 - loss 0.05182422 - time (sec): 26.51 - samples/sec: 1953.80 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 16:02:13,882 epoch 4 - iter 308/447 - loss 0.05086636 - time (sec): 30.56 - samples/sec: 1955.14 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 16:02:18,196 epoch 4 - iter 352/447 - loss 0.05167051 - time (sec): 34.88 - samples/sec: 1968.66 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 16:02:22,250 epoch 4 - iter 396/447 - loss 0.05200802 - time (sec): 38.93 - samples/sec: 1971.49 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 16:02:26,437 epoch 4 - iter 440/447 - loss 0.05402605 - time (sec): 43.12 - samples/sec: 1980.43 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 16:02:27,080 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:02:27,080 EPOCH 4 done: loss 0.0547 - lr: 0.000020 |
|
2023-10-17 16:02:38,092 DEV : loss 0.15765978395938873 - f1-score (micro avg) 0.7564 |
|
2023-10-17 16:02:38,149 saving best model |
|
2023-10-17 16:02:39,959 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:02:44,066 epoch 5 - iter 44/447 - loss 0.02163230 - time (sec): 4.10 - samples/sec: 2014.16 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 16:02:48,624 epoch 5 - iter 88/447 - loss 0.02328428 - time (sec): 8.66 - samples/sec: 2063.37 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 16:02:52,824 epoch 5 - iter 132/447 - loss 0.02815843 - time (sec): 12.86 - samples/sec: 2055.05 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 16:02:57,091 epoch 5 - iter 176/447 - loss 0.03162369 - time (sec): 17.13 - samples/sec: 2030.52 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 16:03:01,212 epoch 5 - iter 220/447 - loss 0.03390401 - time (sec): 21.25 - samples/sec: 2016.40 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 16:03:05,489 epoch 5 - iter 264/447 - loss 0.03510618 - time (sec): 25.53 - samples/sec: 1996.63 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 16:03:09,836 epoch 5 - iter 308/447 - loss 0.03570858 - time (sec): 29.87 - samples/sec: 2011.06 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 16:03:14,158 epoch 5 - iter 352/447 - loss 0.03496530 - time (sec): 34.19 - samples/sec: 2017.95 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 16:03:18,233 epoch 5 - iter 396/447 - loss 0.03442000 - time (sec): 38.27 - samples/sec: 2012.70 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 16:03:22,296 epoch 5 - iter 440/447 - loss 0.03343545 - time (sec): 42.33 - samples/sec: 2012.39 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 16:03:22,912 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:03:22,912 EPOCH 5 done: loss 0.0336 - lr: 0.000017 |
|
2023-10-17 16:03:34,146 DEV : loss 0.18739798665046692 - f1-score (micro avg) 0.7602 |
|
2023-10-17 16:03:34,211 saving best model |
|
2023-10-17 16:03:35,654 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:03:40,239 epoch 6 - iter 44/447 - loss 0.02567182 - time (sec): 4.58 - samples/sec: 1915.30 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 16:03:44,559 epoch 6 - iter 88/447 - loss 0.02386413 - time (sec): 8.90 - samples/sec: 1963.68 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 16:03:48,830 epoch 6 - iter 132/447 - loss 0.02665298 - time (sec): 13.17 - samples/sec: 1938.11 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 16:03:52,872 epoch 6 - iter 176/447 - loss 0.02638426 - time (sec): 17.21 - samples/sec: 1966.56 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 16:03:56,972 epoch 6 - iter 220/447 - loss 0.02455531 - time (sec): 21.31 - samples/sec: 2002.06 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 16:04:01,089 epoch 6 - iter 264/447 - loss 0.02439035 - time (sec): 25.43 - samples/sec: 1989.32 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 16:04:05,048 epoch 6 - iter 308/447 - loss 0.02384438 - time (sec): 29.39 - samples/sec: 1990.74 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 16:04:09,461 epoch 6 - iter 352/447 - loss 0.02340501 - time (sec): 33.80 - samples/sec: 1998.99 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 16:04:13,567 epoch 6 - iter 396/447 - loss 0.02300984 - time (sec): 37.91 - samples/sec: 1999.25 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 16:04:18,493 epoch 6 - iter 440/447 - loss 0.02335350 - time (sec): 42.83 - samples/sec: 1992.49 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 16:04:19,112 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:04:19,113 EPOCH 6 done: loss 0.0233 - lr: 0.000013 |
|
2023-10-17 16:04:30,550 DEV : loss 0.1992470622062683 - f1-score (micro avg) 0.7886 |
|
2023-10-17 16:04:30,611 saving best model |
|
2023-10-17 16:04:32,023 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:04:36,035 epoch 7 - iter 44/447 - loss 0.01165349 - time (sec): 4.01 - samples/sec: 2154.32 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 16:04:39,982 epoch 7 - iter 88/447 - loss 0.01076700 - time (sec): 7.95 - samples/sec: 2043.10 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 16:04:43,960 epoch 7 - iter 132/447 - loss 0.01479762 - time (sec): 11.93 - samples/sec: 2072.77 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 16:04:48,204 epoch 7 - iter 176/447 - loss 0.01368042 - time (sec): 16.18 - samples/sec: 2089.53 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 16:04:52,249 epoch 7 - iter 220/447 - loss 0.01535559 - time (sec): 20.22 - samples/sec: 2089.04 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 16:04:56,520 epoch 7 - iter 264/447 - loss 0.01497302 - time (sec): 24.49 - samples/sec: 2078.72 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 16:05:00,828 epoch 7 - iter 308/447 - loss 0.01480877 - time (sec): 28.80 - samples/sec: 2071.01 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 16:05:05,246 epoch 7 - iter 352/447 - loss 0.01534251 - time (sec): 33.22 - samples/sec: 2063.40 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 16:05:09,457 epoch 7 - iter 396/447 - loss 0.01577918 - time (sec): 37.43 - samples/sec: 2062.23 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 16:05:13,493 epoch 7 - iter 440/447 - loss 0.01506408 - time (sec): 41.47 - samples/sec: 2055.56 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 16:05:14,130 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:05:14,130 EPOCH 7 done: loss 0.0151 - lr: 0.000010 |
|
2023-10-17 16:05:25,738 DEV : loss 0.19981977343559265 - f1-score (micro avg) 0.7962 |
|
2023-10-17 16:05:25,795 saving best model |
|
2023-10-17 16:05:27,205 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:05:31,392 epoch 8 - iter 44/447 - loss 0.00747848 - time (sec): 4.18 - samples/sec: 2091.78 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 16:05:35,357 epoch 8 - iter 88/447 - loss 0.00942650 - time (sec): 8.15 - samples/sec: 2073.55 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 16:05:39,452 epoch 8 - iter 132/447 - loss 0.01019952 - time (sec): 12.24 - samples/sec: 2051.86 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 16:05:43,674 epoch 8 - iter 176/447 - loss 0.01051999 - time (sec): 16.46 - samples/sec: 2018.14 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 16:05:48,447 epoch 8 - iter 220/447 - loss 0.00988506 - time (sec): 21.24 - samples/sec: 2029.40 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 16:05:52,743 epoch 8 - iter 264/447 - loss 0.00923766 - time (sec): 25.53 - samples/sec: 2028.90 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 16:05:56,918 epoch 8 - iter 308/447 - loss 0.00896950 - time (sec): 29.71 - samples/sec: 2045.61 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 16:06:01,147 epoch 8 - iter 352/447 - loss 0.00877691 - time (sec): 33.94 - samples/sec: 2033.23 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 16:06:05,239 epoch 8 - iter 396/447 - loss 0.00839354 - time (sec): 38.03 - samples/sec: 2027.39 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 16:06:09,389 epoch 8 - iter 440/447 - loss 0.00837721 - time (sec): 42.18 - samples/sec: 2020.17 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 16:06:10,039 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:06:10,039 EPOCH 8 done: loss 0.0085 - lr: 0.000007 |
|
2023-10-17 16:06:21,780 DEV : loss 0.21822908520698547 - f1-score (micro avg) 0.7915 |
|
2023-10-17 16:06:21,841 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:06:25,974 epoch 9 - iter 44/447 - loss 0.00971530 - time (sec): 4.13 - samples/sec: 2046.00 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 16:06:30,128 epoch 9 - iter 88/447 - loss 0.00589797 - time (sec): 8.28 - samples/sec: 2051.38 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 16:06:34,084 epoch 9 - iter 132/447 - loss 0.00489136 - time (sec): 12.24 - samples/sec: 2019.89 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 16:06:38,278 epoch 9 - iter 176/447 - loss 0.00468170 - time (sec): 16.43 - samples/sec: 2041.42 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 16:06:42,419 epoch 9 - iter 220/447 - loss 0.00474446 - time (sec): 20.58 - samples/sec: 2047.85 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 16:06:46,728 epoch 9 - iter 264/447 - loss 0.00529921 - time (sec): 24.88 - samples/sec: 2054.82 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 16:06:50,744 epoch 9 - iter 308/447 - loss 0.00534902 - time (sec): 28.90 - samples/sec: 2056.82 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 16:06:54,817 epoch 9 - iter 352/447 - loss 0.00532626 - time (sec): 32.97 - samples/sec: 2060.60 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 16:06:59,232 epoch 9 - iter 396/447 - loss 0.00517003 - time (sec): 37.39 - samples/sec: 2059.50 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 16:07:03,570 epoch 9 - iter 440/447 - loss 0.00496894 - time (sec): 41.73 - samples/sec: 2052.54 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 16:07:04,188 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:07:04,188 EPOCH 9 done: loss 0.0049 - lr: 0.000003 |
|
2023-10-17 16:07:15,489 DEV : loss 0.2285258173942566 - f1-score (micro avg) 0.7966 |
|
2023-10-17 16:07:15,545 saving best model |
|
2023-10-17 16:07:16,964 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:07:21,376 epoch 10 - iter 44/447 - loss 0.00131630 - time (sec): 4.41 - samples/sec: 2067.92 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 16:07:25,410 epoch 10 - iter 88/447 - loss 0.00319788 - time (sec): 8.44 - samples/sec: 2035.90 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 16:07:29,655 epoch 10 - iter 132/447 - loss 0.00353846 - time (sec): 12.69 - samples/sec: 1978.90 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 16:07:34,051 epoch 10 - iter 176/447 - loss 0.00330267 - time (sec): 17.08 - samples/sec: 1977.05 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 16:07:38,665 epoch 10 - iter 220/447 - loss 0.00339446 - time (sec): 21.70 - samples/sec: 1945.15 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 16:07:43,234 epoch 10 - iter 264/447 - loss 0.00404962 - time (sec): 26.27 - samples/sec: 1971.40 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 16:07:47,304 epoch 10 - iter 308/447 - loss 0.00401999 - time (sec): 30.34 - samples/sec: 1956.79 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 16:07:51,685 epoch 10 - iter 352/447 - loss 0.00372843 - time (sec): 34.72 - samples/sec: 1959.83 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 16:07:55,746 epoch 10 - iter 396/447 - loss 0.00351848 - time (sec): 38.78 - samples/sec: 1963.55 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 16:07:59,987 epoch 10 - iter 440/447 - loss 0.00359443 - time (sec): 43.02 - samples/sec: 1975.68 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 16:08:00,668 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:08:00,669 EPOCH 10 done: loss 0.0035 - lr: 0.000000 |
|
2023-10-17 16:08:11,622 DEV : loss 0.22872760891914368 - f1-score (micro avg) 0.7952 |
|
2023-10-17 16:08:12,224 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 16:08:12,226 Loading model from best epoch ... |
|
2023-10-17 16:08:14,951 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time |
|
2023-10-17 16:08:21,279 |
|
Results: |
|
- F-score (micro) 0.764 |
|
- F-score (macro) 0.6761 |
|
- Accuracy 0.6388 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.8315 0.8775 0.8539 596 |
|
pers 0.7314 0.7688 0.7496 333 |
|
org 0.4892 0.5152 0.5018 132 |
|
prod 0.6154 0.4848 0.5424 66 |
|
time 0.7115 0.7551 0.7327 49 |
|
|
|
micro avg 0.7496 0.7789 0.7640 1176 |
|
macro avg 0.6758 0.6803 0.6761 1176 |
|
weighted avg 0.7476 0.7789 0.7623 1176 |
|
|
|
2023-10-17 16:08:21,280 ---------------------------------------------------------------------------------------------------- |
|
|