|
--- |
|
language: de |
|
license: mit |
|
tags: |
|
- flair |
|
- token-classification |
|
- sequence-tagger-model |
|
base_model: hmteams/teams-base-historic-multilingual-discriminator |
|
widget: |
|
- text: Es war am 25sten , als Lord Corn wollis Dublin mit seinem Gefolge und mehrern |
|
Truppen verließ , um in einer Central - Lage bey Sligo die Operationen der Armee |
|
persönlich zu dirigiren . Der Feind dürfte bald in die Enge kommen , da Gen . |
|
Lacke mit 6000 Mann ihm entgegen marschirt . |
|
--- |
|
|
|
# Fine-tuned Flair Model on German HIPE-2020 Dataset (HIPE-2022) |
|
|
|
This Flair model was fine-tuned on the |
|
[German HIPE-2020](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md) |
|
NER Dataset using hmTEAMS as backbone LM. |
|
|
|
The HIPE-2020 dataset is comprised of newspapers from mid 19C to mid 20C. For information can be found |
|
[here](https://dl.acm.org/doi/abs/10.1007/978-3-030-58219-7_21). |
|
|
|
The following NEs were annotated: `loc`, `org`, `pers`, `prod`, `time` and `comp`. |
|
|
|
# Results |
|
|
|
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: |
|
|
|
* Batch Sizes: `[8, 4]` |
|
* Learning Rates: `[3e-05, 5e-05]` |
|
|
|
And report micro F1-score on development set: |
|
|
|
| Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. | |
|
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------| |
|
| bs8-e10-lr3e-05 | [0.7969][1] | [0.7966][2] | [0.8066][3] | [0.8021][4] | [0.8053][5] | 80.15 ± 0.41 | |
|
| bs8-e10-lr5e-05 | [0.8025][6] | [0.794][7] | [0.8013][8] | [0.7942][9] | [0.794][10] | 79.72 ± 0.39 | |
|
| bs4-e10-lr3e-05 | [0.7931][11] | [0.7947][12] | [0.802][13] | [0.8034][14] | [0.7878][15] | 79.62 ± 0.58 | |
|
| bs4-e10-lr5e-05 | [0.7904][16] | [0.7948][17] | [0.7858][18] | [0.7958][19] | [0.7883][20] | 79.1 ± 0.38 | |
|
|
|
[1]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 |
|
[2]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 |
|
[3]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 |
|
[4]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 |
|
[5]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 |
|
[6]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 |
|
[7]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 |
|
[8]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 |
|
[9]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 |
|
[10]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 |
|
[11]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 |
|
[12]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 |
|
[13]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 |
|
[14]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 |
|
[15]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 |
|
[16]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 |
|
[17]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 |
|
[18]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 |
|
[19]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 |
|
[20]: https://hf.co/stefan-it/hmbench-hipe2020-de-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 |
|
|
|
The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub. |
|
|
|
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). |
|
|
|
# Acknowledgements |
|
|
|
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and |
|
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. |
|
|
|
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). |
|
Many Thanks for providing access to the TPUs ❤️ |
|
|