File size: 24,076 Bytes
cd935fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
2023-10-17 11:52:54,786 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:54,787 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 11:52:54,787 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:54,787 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
 - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-17 11:52:54,787 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:54,787 Train:  14465 sentences
2023-10-17 11:52:54,788         (train_with_dev=False, train_with_test=False)
2023-10-17 11:52:54,788 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:54,788 Training Params:
2023-10-17 11:52:54,788  - learning_rate: "5e-05" 
2023-10-17 11:52:54,788  - mini_batch_size: "4"
2023-10-17 11:52:54,788  - max_epochs: "10"
2023-10-17 11:52:54,788  - shuffle: "True"
2023-10-17 11:52:54,788 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:54,788 Plugins:
2023-10-17 11:52:54,788  - TensorboardLogger
2023-10-17 11:52:54,788  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 11:52:54,788 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:54,788 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 11:52:54,788  - metric: "('micro avg', 'f1-score')"
2023-10-17 11:52:54,788 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:54,788 Computation:
2023-10-17 11:52:54,789  - compute on device: cuda:0
2023-10-17 11:52:54,789  - embedding storage: none
2023-10-17 11:52:54,789 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:54,789 Model training base path: "hmbench-letemps/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-17 11:52:54,789 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:54,789 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:54,789 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 11:53:17,101 epoch 1 - iter 361/3617 - loss 1.45041553 - time (sec): 22.31 - samples/sec: 1698.14 - lr: 0.000005 - momentum: 0.000000
2023-10-17 11:53:38,886 epoch 1 - iter 722/3617 - loss 0.83716082 - time (sec): 44.10 - samples/sec: 1686.06 - lr: 0.000010 - momentum: 0.000000
2023-10-17 11:54:02,640 epoch 1 - iter 1083/3617 - loss 0.59781487 - time (sec): 67.85 - samples/sec: 1681.62 - lr: 0.000015 - momentum: 0.000000
2023-10-17 11:54:24,936 epoch 1 - iter 1444/3617 - loss 0.48149327 - time (sec): 90.15 - samples/sec: 1694.00 - lr: 0.000020 - momentum: 0.000000
2023-10-17 11:54:47,775 epoch 1 - iter 1805/3617 - loss 0.41319463 - time (sec): 112.98 - samples/sec: 1690.70 - lr: 0.000025 - momentum: 0.000000
2023-10-17 11:55:11,378 epoch 1 - iter 2166/3617 - loss 0.36558875 - time (sec): 136.59 - samples/sec: 1672.75 - lr: 0.000030 - momentum: 0.000000
2023-10-17 11:55:35,040 epoch 1 - iter 2527/3617 - loss 0.32938220 - time (sec): 160.25 - samples/sec: 1663.32 - lr: 0.000035 - momentum: 0.000000
2023-10-17 11:55:59,195 epoch 1 - iter 2888/3617 - loss 0.30249835 - time (sec): 184.40 - samples/sec: 1658.74 - lr: 0.000040 - momentum: 0.000000
2023-10-17 11:56:22,092 epoch 1 - iter 3249/3617 - loss 0.28225761 - time (sec): 207.30 - samples/sec: 1657.19 - lr: 0.000045 - momentum: 0.000000
2023-10-17 11:56:45,459 epoch 1 - iter 3610/3617 - loss 0.26717410 - time (sec): 230.67 - samples/sec: 1644.02 - lr: 0.000050 - momentum: 0.000000
2023-10-17 11:56:45,909 ----------------------------------------------------------------------------------------------------
2023-10-17 11:56:45,909 EPOCH 1 done: loss 0.2669 - lr: 0.000050
2023-10-17 11:56:51,334 DEV : loss 0.11786916851997375 - f1-score (micro avg)  0.5019
2023-10-17 11:56:51,374 saving best model
2023-10-17 11:56:51,877 ----------------------------------------------------------------------------------------------------
2023-10-17 11:57:15,292 epoch 2 - iter 361/3617 - loss 0.10557221 - time (sec): 23.41 - samples/sec: 1662.15 - lr: 0.000049 - momentum: 0.000000
2023-10-17 11:57:37,011 epoch 2 - iter 722/3617 - loss 0.10278944 - time (sec): 45.13 - samples/sec: 1710.38 - lr: 0.000049 - momentum: 0.000000
2023-10-17 11:57:58,661 epoch 2 - iter 1083/3617 - loss 0.10655278 - time (sec): 66.78 - samples/sec: 1709.09 - lr: 0.000048 - momentum: 0.000000
2023-10-17 11:58:21,263 epoch 2 - iter 1444/3617 - loss 0.10643025 - time (sec): 89.38 - samples/sec: 1696.68 - lr: 0.000048 - momentum: 0.000000
2023-10-17 11:58:44,442 epoch 2 - iter 1805/3617 - loss 0.10457147 - time (sec): 112.56 - samples/sec: 1674.98 - lr: 0.000047 - momentum: 0.000000
2023-10-17 11:59:07,714 epoch 2 - iter 2166/3617 - loss 0.10556253 - time (sec): 135.84 - samples/sec: 1671.06 - lr: 0.000047 - momentum: 0.000000
2023-10-17 11:59:30,682 epoch 2 - iter 2527/3617 - loss 0.10440273 - time (sec): 158.80 - samples/sec: 1673.80 - lr: 0.000046 - momentum: 0.000000
2023-10-17 11:59:51,173 epoch 2 - iter 2888/3617 - loss 0.10398260 - time (sec): 179.29 - samples/sec: 1692.95 - lr: 0.000046 - momentum: 0.000000
2023-10-17 12:00:09,116 epoch 2 - iter 3249/3617 - loss 0.10460700 - time (sec): 197.24 - samples/sec: 1736.35 - lr: 0.000045 - momentum: 0.000000
2023-10-17 12:00:30,262 epoch 2 - iter 3610/3617 - loss 0.10618003 - time (sec): 218.38 - samples/sec: 1736.86 - lr: 0.000044 - momentum: 0.000000
2023-10-17 12:00:30,682 ----------------------------------------------------------------------------------------------------
2023-10-17 12:00:30,682 EPOCH 2 done: loss 0.1063 - lr: 0.000044
2023-10-17 12:00:37,743 DEV : loss 0.15698249638080597 - f1-score (micro avg)  0.6292
2023-10-17 12:00:37,792 saving best model
2023-10-17 12:00:38,379 ----------------------------------------------------------------------------------------------------
2023-10-17 12:01:00,850 epoch 3 - iter 361/3617 - loss 0.08022559 - time (sec): 22.47 - samples/sec: 1636.31 - lr: 0.000044 - momentum: 0.000000
2023-10-17 12:01:23,625 epoch 3 - iter 722/3617 - loss 0.08069320 - time (sec): 45.24 - samples/sec: 1663.23 - lr: 0.000043 - momentum: 0.000000
2023-10-17 12:01:46,101 epoch 3 - iter 1083/3617 - loss 0.08181083 - time (sec): 67.72 - samples/sec: 1672.77 - lr: 0.000043 - momentum: 0.000000
2023-10-17 12:02:09,383 epoch 3 - iter 1444/3617 - loss 0.08325852 - time (sec): 91.00 - samples/sec: 1661.25 - lr: 0.000042 - momentum: 0.000000
2023-10-17 12:02:27,763 epoch 3 - iter 1805/3617 - loss 0.08237466 - time (sec): 109.38 - samples/sec: 1726.56 - lr: 0.000042 - momentum: 0.000000
2023-10-17 12:02:49,091 epoch 3 - iter 2166/3617 - loss 0.08389650 - time (sec): 130.71 - samples/sec: 1745.30 - lr: 0.000041 - momentum: 0.000000
2023-10-17 12:03:11,251 epoch 3 - iter 2527/3617 - loss 0.08517465 - time (sec): 152.87 - samples/sec: 1731.56 - lr: 0.000041 - momentum: 0.000000
2023-10-17 12:03:33,655 epoch 3 - iter 2888/3617 - loss 0.08551924 - time (sec): 175.27 - samples/sec: 1728.77 - lr: 0.000040 - momentum: 0.000000
2023-10-17 12:03:56,927 epoch 3 - iter 3249/3617 - loss 0.08551615 - time (sec): 198.55 - samples/sec: 1722.72 - lr: 0.000039 - momentum: 0.000000
2023-10-17 12:04:19,219 epoch 3 - iter 3610/3617 - loss 0.08533098 - time (sec): 220.84 - samples/sec: 1717.15 - lr: 0.000039 - momentum: 0.000000
2023-10-17 12:04:19,653 ----------------------------------------------------------------------------------------------------
2023-10-17 12:04:19,654 EPOCH 3 done: loss 0.0853 - lr: 0.000039
2023-10-17 12:04:26,008 DEV : loss 0.20511414110660553 - f1-score (micro avg)  0.6161
2023-10-17 12:04:26,049 ----------------------------------------------------------------------------------------------------
2023-10-17 12:04:49,116 epoch 4 - iter 361/3617 - loss 0.05873537 - time (sec): 23.07 - samples/sec: 1674.62 - lr: 0.000038 - momentum: 0.000000
2023-10-17 12:05:12,376 epoch 4 - iter 722/3617 - loss 0.06004159 - time (sec): 46.33 - samples/sec: 1645.73 - lr: 0.000038 - momentum: 0.000000
2023-10-17 12:05:35,066 epoch 4 - iter 1083/3617 - loss 0.06324927 - time (sec): 69.02 - samples/sec: 1673.37 - lr: 0.000037 - momentum: 0.000000
2023-10-17 12:05:57,755 epoch 4 - iter 1444/3617 - loss 0.06295022 - time (sec): 91.70 - samples/sec: 1671.02 - lr: 0.000037 - momentum: 0.000000
2023-10-17 12:06:20,466 epoch 4 - iter 1805/3617 - loss 0.06317630 - time (sec): 114.42 - samples/sec: 1668.82 - lr: 0.000036 - momentum: 0.000000
2023-10-17 12:06:42,695 epoch 4 - iter 2166/3617 - loss 0.06379107 - time (sec): 136.64 - samples/sec: 1673.67 - lr: 0.000036 - momentum: 0.000000
2023-10-17 12:07:04,646 epoch 4 - iter 2527/3617 - loss 0.06397835 - time (sec): 158.60 - samples/sec: 1681.56 - lr: 0.000035 - momentum: 0.000000
2023-10-17 12:07:27,971 epoch 4 - iter 2888/3617 - loss 0.06348311 - time (sec): 181.92 - samples/sec: 1678.47 - lr: 0.000034 - momentum: 0.000000
2023-10-17 12:07:49,326 epoch 4 - iter 3249/3617 - loss 0.06347814 - time (sec): 203.28 - samples/sec: 1686.73 - lr: 0.000034 - momentum: 0.000000
2023-10-17 12:08:11,036 epoch 4 - iter 3610/3617 - loss 0.06347373 - time (sec): 224.98 - samples/sec: 1686.43 - lr: 0.000033 - momentum: 0.000000
2023-10-17 12:08:11,436 ----------------------------------------------------------------------------------------------------
2023-10-17 12:08:11,436 EPOCH 4 done: loss 0.0634 - lr: 0.000033
2023-10-17 12:08:18,597 DEV : loss 0.22120679914951324 - f1-score (micro avg)  0.6187
2023-10-17 12:08:18,639 ----------------------------------------------------------------------------------------------------
2023-10-17 12:08:42,405 epoch 5 - iter 361/3617 - loss 0.03776153 - time (sec): 23.77 - samples/sec: 1596.80 - lr: 0.000033 - momentum: 0.000000
2023-10-17 12:09:05,646 epoch 5 - iter 722/3617 - loss 0.04135391 - time (sec): 47.01 - samples/sec: 1629.07 - lr: 0.000032 - momentum: 0.000000
2023-10-17 12:09:28,421 epoch 5 - iter 1083/3617 - loss 0.04270991 - time (sec): 69.78 - samples/sec: 1637.87 - lr: 0.000032 - momentum: 0.000000
2023-10-17 12:09:51,769 epoch 5 - iter 1444/3617 - loss 0.04260540 - time (sec): 93.13 - samples/sec: 1635.70 - lr: 0.000031 - momentum: 0.000000
2023-10-17 12:10:14,299 epoch 5 - iter 1805/3617 - loss 0.04110131 - time (sec): 115.66 - samples/sec: 1656.86 - lr: 0.000031 - momentum: 0.000000
2023-10-17 12:10:36,976 epoch 5 - iter 2166/3617 - loss 0.04177018 - time (sec): 138.34 - samples/sec: 1668.53 - lr: 0.000030 - momentum: 0.000000
2023-10-17 12:10:59,264 epoch 5 - iter 2527/3617 - loss 0.04324074 - time (sec): 160.62 - samples/sec: 1663.73 - lr: 0.000029 - momentum: 0.000000
2023-10-17 12:11:21,101 epoch 5 - iter 2888/3617 - loss 0.04411956 - time (sec): 182.46 - samples/sec: 1658.59 - lr: 0.000029 - momentum: 0.000000
2023-10-17 12:11:45,148 epoch 5 - iter 3249/3617 - loss 0.04348395 - time (sec): 206.51 - samples/sec: 1652.71 - lr: 0.000028 - momentum: 0.000000
2023-10-17 12:12:07,783 epoch 5 - iter 3610/3617 - loss 0.04478114 - time (sec): 229.14 - samples/sec: 1654.40 - lr: 0.000028 - momentum: 0.000000
2023-10-17 12:12:08,198 ----------------------------------------------------------------------------------------------------
2023-10-17 12:12:08,198 EPOCH 5 done: loss 0.0447 - lr: 0.000028
2023-10-17 12:12:14,607 DEV : loss 0.2750839591026306 - f1-score (micro avg)  0.6418
2023-10-17 12:12:14,652 saving best model
2023-10-17 12:12:15,246 ----------------------------------------------------------------------------------------------------
2023-10-17 12:12:37,546 epoch 6 - iter 361/3617 - loss 0.02896062 - time (sec): 22.30 - samples/sec: 1678.63 - lr: 0.000027 - momentum: 0.000000
2023-10-17 12:13:01,122 epoch 6 - iter 722/3617 - loss 0.02877240 - time (sec): 45.87 - samples/sec: 1629.00 - lr: 0.000027 - momentum: 0.000000
2023-10-17 12:13:23,419 epoch 6 - iter 1083/3617 - loss 0.03088311 - time (sec): 68.17 - samples/sec: 1654.59 - lr: 0.000026 - momentum: 0.000000
2023-10-17 12:13:45,707 epoch 6 - iter 1444/3617 - loss 0.03181763 - time (sec): 90.46 - samples/sec: 1672.21 - lr: 0.000026 - momentum: 0.000000
2023-10-17 12:14:07,684 epoch 6 - iter 1805/3617 - loss 0.03280478 - time (sec): 112.44 - samples/sec: 1689.30 - lr: 0.000025 - momentum: 0.000000
2023-10-17 12:14:30,091 epoch 6 - iter 2166/3617 - loss 0.03257395 - time (sec): 134.84 - samples/sec: 1691.26 - lr: 0.000024 - momentum: 0.000000
2023-10-17 12:14:52,451 epoch 6 - iter 2527/3617 - loss 0.03273840 - time (sec): 157.20 - samples/sec: 1693.80 - lr: 0.000024 - momentum: 0.000000
2023-10-17 12:15:16,751 epoch 6 - iter 2888/3617 - loss 0.03337305 - time (sec): 181.50 - samples/sec: 1675.04 - lr: 0.000023 - momentum: 0.000000
2023-10-17 12:15:39,289 epoch 6 - iter 3249/3617 - loss 0.03410165 - time (sec): 204.04 - samples/sec: 1671.99 - lr: 0.000023 - momentum: 0.000000
2023-10-17 12:15:59,015 epoch 6 - iter 3610/3617 - loss 0.03367272 - time (sec): 223.77 - samples/sec: 1695.44 - lr: 0.000022 - momentum: 0.000000
2023-10-17 12:15:59,460 ----------------------------------------------------------------------------------------------------
2023-10-17 12:15:59,460 EPOCH 6 done: loss 0.0337 - lr: 0.000022
2023-10-17 12:16:06,723 DEV : loss 0.3224092423915863 - f1-score (micro avg)  0.6278
2023-10-17 12:16:06,764 ----------------------------------------------------------------------------------------------------
2023-10-17 12:16:30,012 epoch 7 - iter 361/3617 - loss 0.01207785 - time (sec): 23.25 - samples/sec: 1632.13 - lr: 0.000022 - momentum: 0.000000
2023-10-17 12:16:52,430 epoch 7 - iter 722/3617 - loss 0.01588108 - time (sec): 45.66 - samples/sec: 1649.57 - lr: 0.000021 - momentum: 0.000000
2023-10-17 12:17:14,472 epoch 7 - iter 1083/3617 - loss 0.01914681 - time (sec): 67.71 - samples/sec: 1671.24 - lr: 0.000021 - momentum: 0.000000
2023-10-17 12:17:38,387 epoch 7 - iter 1444/3617 - loss 0.02093559 - time (sec): 91.62 - samples/sec: 1648.96 - lr: 0.000020 - momentum: 0.000000
2023-10-17 12:18:00,039 epoch 7 - iter 1805/3617 - loss 0.02030467 - time (sec): 113.27 - samples/sec: 1670.47 - lr: 0.000019 - momentum: 0.000000
2023-10-17 12:18:22,176 epoch 7 - iter 2166/3617 - loss 0.02042856 - time (sec): 135.41 - samples/sec: 1675.92 - lr: 0.000019 - momentum: 0.000000
2023-10-17 12:18:45,119 epoch 7 - iter 2527/3617 - loss 0.01975550 - time (sec): 158.35 - samples/sec: 1676.74 - lr: 0.000018 - momentum: 0.000000
2023-10-17 12:19:04,588 epoch 7 - iter 2888/3617 - loss 0.01949421 - time (sec): 177.82 - samples/sec: 1705.58 - lr: 0.000018 - momentum: 0.000000
2023-10-17 12:19:22,591 epoch 7 - iter 3249/3617 - loss 0.01975215 - time (sec): 195.82 - samples/sec: 1746.76 - lr: 0.000017 - momentum: 0.000000
2023-10-17 12:19:44,496 epoch 7 - iter 3610/3617 - loss 0.02006605 - time (sec): 217.73 - samples/sec: 1742.14 - lr: 0.000017 - momentum: 0.000000
2023-10-17 12:19:44,901 ----------------------------------------------------------------------------------------------------
2023-10-17 12:19:44,901 EPOCH 7 done: loss 0.0202 - lr: 0.000017
2023-10-17 12:19:51,251 DEV : loss 0.317545086145401 - f1-score (micro avg)  0.6272
2023-10-17 12:19:51,295 ----------------------------------------------------------------------------------------------------
2023-10-17 12:20:13,563 epoch 8 - iter 361/3617 - loss 0.01412422 - time (sec): 22.27 - samples/sec: 1693.14 - lr: 0.000016 - momentum: 0.000000
2023-10-17 12:20:37,743 epoch 8 - iter 722/3617 - loss 0.01808065 - time (sec): 46.45 - samples/sec: 1612.50 - lr: 0.000016 - momentum: 0.000000
2023-10-17 12:21:02,137 epoch 8 - iter 1083/3617 - loss 0.01681718 - time (sec): 70.84 - samples/sec: 1590.05 - lr: 0.000015 - momentum: 0.000000
2023-10-17 12:21:26,146 epoch 8 - iter 1444/3617 - loss 0.01601246 - time (sec): 94.85 - samples/sec: 1600.06 - lr: 0.000014 - momentum: 0.000000
2023-10-17 12:21:49,292 epoch 8 - iter 1805/3617 - loss 0.01568364 - time (sec): 117.99 - samples/sec: 1600.39 - lr: 0.000014 - momentum: 0.000000
2023-10-17 12:22:11,848 epoch 8 - iter 2166/3617 - loss 0.01635340 - time (sec): 140.55 - samples/sec: 1609.35 - lr: 0.000013 - momentum: 0.000000
2023-10-17 12:22:33,797 epoch 8 - iter 2527/3617 - loss 0.01630735 - time (sec): 162.50 - samples/sec: 1622.79 - lr: 0.000013 - momentum: 0.000000
2023-10-17 12:22:55,815 epoch 8 - iter 2888/3617 - loss 0.01515567 - time (sec): 184.52 - samples/sec: 1637.90 - lr: 0.000012 - momentum: 0.000000
2023-10-17 12:23:18,342 epoch 8 - iter 3249/3617 - loss 0.01483412 - time (sec): 207.05 - samples/sec: 1648.57 - lr: 0.000012 - momentum: 0.000000
2023-10-17 12:23:41,314 epoch 8 - iter 3610/3617 - loss 0.01486930 - time (sec): 230.02 - samples/sec: 1648.51 - lr: 0.000011 - momentum: 0.000000
2023-10-17 12:23:41,781 ----------------------------------------------------------------------------------------------------
2023-10-17 12:23:41,781 EPOCH 8 done: loss 0.0148 - lr: 0.000011
2023-10-17 12:23:48,164 DEV : loss 0.3655739724636078 - f1-score (micro avg)  0.6602
2023-10-17 12:23:48,207 saving best model
2023-10-17 12:23:48,840 ----------------------------------------------------------------------------------------------------
2023-10-17 12:24:11,655 epoch 9 - iter 361/3617 - loss 0.00915400 - time (sec): 22.81 - samples/sec: 1667.62 - lr: 0.000011 - momentum: 0.000000
2023-10-17 12:24:34,394 epoch 9 - iter 722/3617 - loss 0.00828080 - time (sec): 45.55 - samples/sec: 1634.29 - lr: 0.000010 - momentum: 0.000000
2023-10-17 12:24:57,398 epoch 9 - iter 1083/3617 - loss 0.00838778 - time (sec): 68.56 - samples/sec: 1624.06 - lr: 0.000009 - momentum: 0.000000
2023-10-17 12:25:21,466 epoch 9 - iter 1444/3617 - loss 0.00854920 - time (sec): 92.62 - samples/sec: 1609.74 - lr: 0.000009 - momentum: 0.000000
2023-10-17 12:25:44,800 epoch 9 - iter 1805/3617 - loss 0.00847143 - time (sec): 115.96 - samples/sec: 1621.53 - lr: 0.000008 - momentum: 0.000000
2023-10-17 12:26:07,965 epoch 9 - iter 2166/3617 - loss 0.00871744 - time (sec): 139.12 - samples/sec: 1625.29 - lr: 0.000008 - momentum: 0.000000
2023-10-17 12:26:31,239 epoch 9 - iter 2527/3617 - loss 0.00823885 - time (sec): 162.40 - samples/sec: 1627.58 - lr: 0.000007 - momentum: 0.000000
2023-10-17 12:26:55,849 epoch 9 - iter 2888/3617 - loss 0.00773025 - time (sec): 187.01 - samples/sec: 1618.47 - lr: 0.000007 - momentum: 0.000000
2023-10-17 12:27:19,397 epoch 9 - iter 3249/3617 - loss 0.00760834 - time (sec): 210.55 - samples/sec: 1614.92 - lr: 0.000006 - momentum: 0.000000
2023-10-17 12:27:43,113 epoch 9 - iter 3610/3617 - loss 0.00769799 - time (sec): 234.27 - samples/sec: 1618.48 - lr: 0.000006 - momentum: 0.000000
2023-10-17 12:27:43,552 ----------------------------------------------------------------------------------------------------
2023-10-17 12:27:43,552 EPOCH 9 done: loss 0.0077 - lr: 0.000006
2023-10-17 12:27:49,962 DEV : loss 0.4163112938404083 - f1-score (micro avg)  0.6467
2023-10-17 12:27:50,004 ----------------------------------------------------------------------------------------------------
2023-10-17 12:28:13,013 epoch 10 - iter 361/3617 - loss 0.00413246 - time (sec): 23.01 - samples/sec: 1593.63 - lr: 0.000005 - momentum: 0.000000
2023-10-17 12:28:35,587 epoch 10 - iter 722/3617 - loss 0.00334843 - time (sec): 45.58 - samples/sec: 1657.68 - lr: 0.000004 - momentum: 0.000000
2023-10-17 12:28:58,768 epoch 10 - iter 1083/3617 - loss 0.00444223 - time (sec): 68.76 - samples/sec: 1625.52 - lr: 0.000004 - momentum: 0.000000
2023-10-17 12:29:22,388 epoch 10 - iter 1444/3617 - loss 0.00421888 - time (sec): 92.38 - samples/sec: 1628.53 - lr: 0.000003 - momentum: 0.000000
2023-10-17 12:29:45,256 epoch 10 - iter 1805/3617 - loss 0.00399761 - time (sec): 115.25 - samples/sec: 1631.71 - lr: 0.000003 - momentum: 0.000000
2023-10-17 12:30:07,935 epoch 10 - iter 2166/3617 - loss 0.00472994 - time (sec): 137.93 - samples/sec: 1641.01 - lr: 0.000002 - momentum: 0.000000
2023-10-17 12:30:31,147 epoch 10 - iter 2527/3617 - loss 0.00456748 - time (sec): 161.14 - samples/sec: 1631.95 - lr: 0.000002 - momentum: 0.000000
2023-10-17 12:30:54,698 epoch 10 - iter 2888/3617 - loss 0.00474495 - time (sec): 184.69 - samples/sec: 1636.72 - lr: 0.000001 - momentum: 0.000000
2023-10-17 12:31:16,709 epoch 10 - iter 3249/3617 - loss 0.00463207 - time (sec): 206.70 - samples/sec: 1652.97 - lr: 0.000001 - momentum: 0.000000
2023-10-17 12:31:40,217 epoch 10 - iter 3610/3617 - loss 0.00465381 - time (sec): 230.21 - samples/sec: 1647.46 - lr: 0.000000 - momentum: 0.000000
2023-10-17 12:31:40,665 ----------------------------------------------------------------------------------------------------
2023-10-17 12:31:40,665 EPOCH 10 done: loss 0.0046 - lr: 0.000000
2023-10-17 12:31:47,136 DEV : loss 0.43618330359458923 - f1-score (micro avg)  0.6512
2023-10-17 12:31:48,461 ----------------------------------------------------------------------------------------------------
2023-10-17 12:31:48,463 Loading model from best epoch ...
2023-10-17 12:31:50,256 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-17 12:31:58,239 
Results:
- F-score (micro) 0.6485
- F-score (macro) 0.4908
- Accuracy 0.4915

By class:
              precision    recall  f1-score   support

         loc     0.6662    0.7733    0.7157       591
        pers     0.5293    0.7339    0.6150       357
         org     0.2353    0.1013    0.1416        79

   micro avg     0.5984    0.7079    0.6485      1027
   macro avg     0.4769    0.5361    0.4908      1027
weighted avg     0.5855    0.7079    0.6366      1027

2023-10-17 12:31:58,239 ----------------------------------------------------------------------------------------------------