|
--- |
|
language: en |
|
license: mit |
|
tags: |
|
- flair |
|
- token-classification |
|
- sequence-tagger-model |
|
base_model: hmteams/teams-base-historic-multilingual-discriminator |
|
widget: |
|
- text: On Wednesday , a public dinner was given by the Conservative Burgesses of |
|
Leads , to the Conservative members of the Leeds Town Council , in the Music Hall |
|
, Albion-street , which was very numerously attended . |
|
--- |
|
|
|
# Fine-tuned Flair Model on TopRes19th English NER Dataset (HIPE-2022) |
|
|
|
This Flair model was fine-tuned on the |
|
[TopRes19th English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-topres19th.md) |
|
NER Dataset using hmTEAMS as backbone LM. |
|
|
|
The TopRes19th dataset consists of NE-annotated historical English newspaper articles from 19C. |
|
|
|
The following NEs were annotated: `BUILDING`, `LOC` and `STREET`. |
|
|
|
# Results |
|
|
|
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: |
|
|
|
* Batch Sizes: `[8, 4]` |
|
* Learning Rates: `[3e-05, 5e-05]` |
|
|
|
And report micro F1-score on development set: |
|
|
|
| Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. | |
|
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------| |
|
| bs8-e10-lr3e-05 | [0.8089][1] | [0.8137][2] | [0.8083][3] | [0.8145][4] | [0.8082][5] | 81.07 ± 0.28 | |
|
| bs4-e10-lr3e-05 | [0.8068][6] | [0.8008][7] | [0.8195][8] | [0.8086][9] | [0.8049][10] | 80.81 ± 0.63 | |
|
| bs8-e10-lr5e-05 | [0.818][11] | [0.795][12] | [0.7992][13] | [0.804][14] | [0.7938][15] | 80.2 ± 0.88 | |
|
| bs4-e10-lr5e-05 | [0.8109][16] | [0.8114][17] | [0.7951][18] | [0.7901][19] | [0.795][20] | 80.05 ± 0.89 | |
|
|
|
[1]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 |
|
[2]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 |
|
[3]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 |
|
[4]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 |
|
[5]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 |
|
[6]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 |
|
[7]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 |
|
[8]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 |
|
[9]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 |
|
[10]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 |
|
[11]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 |
|
[12]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 |
|
[13]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 |
|
[14]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 |
|
[15]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 |
|
[16]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 |
|
[17]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 |
|
[18]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 |
|
[19]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 |
|
[20]: https://hf.co/stefan-it/hmbench-topres19th-en-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 |
|
|
|
The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub. |
|
|
|
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). |
|
|
|
# Acknowledgements |
|
|
|
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and |
|
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. |
|
|
|
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). |
|
Many Thanks for providing access to the TPUs ❤️ |
|
|