steja's picture
kannada whisper small ft
0094930
metadata
language:
  - ka
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
model-index:
  - name: whisper-small-tamil
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs
          config: ta_in
          split: test
          type: google/fleurs
        metrics:
          - name: Wer
            type: wer
            value: 23.1257

whisper-small-tamil

This model is a fine-tuned version of openai/whisper-small on the google/fleurs dataset for Kannada. It achieves the following results on the evaluation set:

  • Loss: 0.2507
  • Wer: 23.1257

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0792 2.27 500 0.2674 24.7048
0.0067 12.19 1000 0.1930 23.7758
0.0011 18.29 1500 0.2161 23.3225
0.0002 24.39 2000 0.2294 23.1332
0.0001 30.48 2500 0.2406 23.1652
0.0001 36.58 3000 0.2461 23.1531
0.0001 42.68 3500 0.2493 23.1108
0.0001 48.78 4000 0.2507 23.1257

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2