whisper-small-shona / README.md
steja's picture
End of training
3b643b7 verified
metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper small shona
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs sn_zw
          type: google/fleurs
          config: sn_zw
          split: test
          args: sn_zw
        metrics:
          - name: Wer
            type: wer
            value: 49.90958408679928

Whisper small shona

This model is a fine-tuned version of openai/whisper-small on the google/fleurs sn_zw dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1220
  • Wer: 49.9096

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 48
  • total_eval_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0064 24.24 400 0.9630 50.7233
0.001 48.48 800 1.0617 49.9397
0.0005 72.73 1200 1.1016 49.9397
0.0004 96.97 1600 1.1220 49.9096
0.0003 121.21 2000 1.1298 50.0422

Framework versions

  • Transformers 4.37.1
  • Pytorch 1.12.0+cu102
  • Datasets 2.16.1
  • Tokenizers 0.15.1