Edit model card

roberta-biobert

This model is a fine-tuned version of xlm-roberta-base on the biobert_json dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0879
  • Precision: 0.9418
  • Recall: 0.9732
  • F1: 0.9572
  • Accuracy: 0.9797

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4746 1.0 612 0.1085 0.9272 0.9526 0.9397 0.9719
0.1335 2.0 1224 0.0932 0.9343 0.9705 0.9521 0.9767
0.0912 3.0 1836 0.0846 0.9445 0.9712 0.9576 0.9800
0.0702 4.0 2448 0.0852 0.9437 0.9724 0.9578 0.9799
0.0524 5.0 3060 0.0879 0.9418 0.9732 0.9572 0.9797

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
14
Safetensors
Model size
277M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for stivenacua17/roberta-biobert

Finetuned
(2623)
this model

Evaluation results