Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

data_seed: 42
seed: 42

datasets:
  - path: data/isaf_press_releases_ft.jsonl
    conversation: alpaca
    type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/tiny-llama/lora-out
hub_model_id: strickvl/isafpr-tiny-llama-lora

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: isaf_pr_ft
wandb_entity: strickvl
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

isafpr-tiny-llama-lora

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0557

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.7724 0.0303 1 1.7779
1.2158 0.2727 9 1.0692
0.2116 0.5455 18 0.1796
0.1051 0.8182 27 0.1048
0.0762 1.0227 36 0.0859
0.0704 1.2955 45 0.0763
0.0661 1.5682 54 0.0692
0.073 1.8409 63 0.0646
0.0625 2.0455 72 0.0621
0.0522 2.3182 81 0.0602
0.0472 2.5909 90 0.0580
0.0545 2.8636 99 0.0571
0.0467 3.0682 108 0.0561
0.057 3.3409 117 0.0557
0.0477 3.6136 126 0.0557

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
22
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for strickvl/isafpr-tiny-llama-lora