CNEC_2_0_ext_slavicbert
This model is a fine-tuned version of DeepPavlov/bert-base-bg-cs-pl-ru-cased on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.2252
- Precision: 0.8578
- Recall: 0.8864
- F1: 0.8719
- Accuracy: 0.9697
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1347 | 4.46 | 1000 | 0.1375 | 0.8279 | 0.8620 | 0.8446 | 0.9656 |
0.0681 | 8.93 | 2000 | 0.1519 | 0.8345 | 0.8710 | 0.8524 | 0.9668 |
0.0406 | 13.39 | 3000 | 0.1663 | 0.8519 | 0.8789 | 0.8652 | 0.9679 |
0.0276 | 17.86 | 4000 | 0.1719 | 0.8623 | 0.8888 | 0.8754 | 0.9690 |
0.02 | 22.32 | 5000 | 0.1920 | 0.8505 | 0.8809 | 0.8654 | 0.9686 |
0.015 | 26.79 | 6000 | 0.1984 | 0.8570 | 0.8893 | 0.8729 | 0.9693 |
0.0108 | 31.25 | 7000 | 0.2048 | 0.8587 | 0.8864 | 0.8723 | 0.9692 |
0.0092 | 35.71 | 8000 | 0.2179 | 0.8606 | 0.8888 | 0.8745 | 0.9696 |
0.0076 | 40.18 | 9000 | 0.2252 | 0.8564 | 0.8878 | 0.8718 | 0.9696 |
0.0057 | 44.64 | 10000 | 0.2262 | 0.8571 | 0.8873 | 0.8720 | 0.9698 |
0.0054 | 49.11 | 11000 | 0.2252 | 0.8578 | 0.8864 | 0.8719 | 0.9697 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 76
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for stulcrad/CNEC_2_0_ext_slavicbert
Base model
DeepPavlov/bert-base-bg-cs-pl-ru-casedEvaluation results
- Precision on cnecvalidation set self-reported0.858
- Recall on cnecvalidation set self-reported0.886
- F1 on cnecvalidation set self-reported0.872
- Accuracy on cnecvalidation set self-reported0.970