CNEC_2_0_ext_slavicbert

This model is a fine-tuned version of DeepPavlov/bert-base-bg-cs-pl-ru-cased on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2252
  • Precision: 0.8578
  • Recall: 0.8864
  • F1: 0.8719
  • Accuracy: 0.9697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1347 4.46 1000 0.1375 0.8279 0.8620 0.8446 0.9656
0.0681 8.93 2000 0.1519 0.8345 0.8710 0.8524 0.9668
0.0406 13.39 3000 0.1663 0.8519 0.8789 0.8652 0.9679
0.0276 17.86 4000 0.1719 0.8623 0.8888 0.8754 0.9690
0.02 22.32 5000 0.1920 0.8505 0.8809 0.8654 0.9686
0.015 26.79 6000 0.1984 0.8570 0.8893 0.8729 0.9693
0.0108 31.25 7000 0.2048 0.8587 0.8864 0.8723 0.9692
0.0092 35.71 8000 0.2179 0.8606 0.8888 0.8745 0.9696
0.0076 40.18 9000 0.2252 0.8564 0.8878 0.8718 0.9696
0.0057 44.64 10000 0.2262 0.8571 0.8873 0.8720 0.9698
0.0054 49.11 11000 0.2252 0.8578 0.8864 0.8719 0.9697

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
76
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for stulcrad/CNEC_2_0_ext_slavicbert

Finetuned
(7)
this model

Evaluation results