SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
neutral
  • 'ordered my new shirt'
  • 'Yay got the Internet on my itouch working'
  • 'Getting ready for work and the sun is shining plus its the w e Bgt tonight what am I gon na do after its finished '
positive
  • 'Finally home after a night of dinner and drinking with friends Going to sleep now hoping the bed doesnt spin too much '
  • ' Thank you I love my tattoos they are all very special to me My feet ones are beautiful '
  • 'Day is going well so far Meeting until four though '
negative
  • ' Oh final msg Why didnt you review my boardgame BookchaseA AA12 when you were on telly We didnt even get a nice letter '
  • 'have to wear my glasses today cos my right eye is swollen and i dont know why'
  • ' how crappy for him'

Evaluation

Metrics

Label Accuracy
all 0.7301

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("subham18/setfit-paraphrase-mpnet-base-v2-twitter-sentiment-cleaned-73")
# Run inference
preds = model("I still miss him And i do nt think hes coming back")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 13.9 31
Label Training Sample Count
Negative 0
Positive 0
Neutral 0

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0011 1 0.3222 -
0.0533 50 0.223 -
0.1066 100 0.2817 -
0.1599 150 0.1102 -
0.2132 200 0.1271 -
0.2665 250 0.0307 -
0.3198 300 0.0013 -
0.3731 350 0.0006 -
0.4264 400 0.0006 -
0.4797 450 0.0004 -
0.5330 500 0.0006 -
0.5864 550 0.0002 -
0.6397 600 0.0003 -
0.6930 650 0.0002 -
0.7463 700 0.0002 -
0.7996 750 0.0002 -
0.8529 800 0.0002 -
0.9062 850 0.0002 -
0.9595 900 0.0005 -
1.0 938 - 0.2816
1.0128 950 0.0001 -
1.0661 1000 0.0027 -
1.1194 1050 0.0002 -
1.1727 1100 0.0002 -
1.2260 1150 0.0001 -
1.2793 1200 0.0003 -
1.3326 1250 0.0001 -
1.3859 1300 0.0002 -
1.4392 1350 0.0001 -
1.4925 1400 0.0001 -
1.5458 1450 0.0001 -
1.5991 1500 0.0001 -
1.6525 1550 0.0001 -
1.7058 1600 0.0001 -
1.7591 1650 0.0001 -
1.8124 1700 0.0001 -
1.8657 1750 0.0002 -
1.9190 1800 0.0001 -
1.9723 1850 0.0001 -
2.0 1876 - 0.2846
2.0256 1900 0.0001 -
2.0789 1950 0.0001 -
2.1322 2000 0.0001 -
2.1855 2050 0.0001 -
2.2388 2100 0.0001 -
2.2921 2150 0.0001 -
2.3454 2200 0.0002 -
2.3987 2250 0.0001 -
2.4520 2300 0.0001 -
2.5053 2350 0.0001 -
2.5586 2400 0.0001 -
2.6119 2450 0.0007 -
2.6652 2500 0.0001 -
2.7186 2550 0.0001 -
2.7719 2600 0.0002 -
2.8252 2650 0.0001 -
2.8785 2700 0.0001 -
2.9318 2750 0.0001 -
2.9851 2800 0.0001 -
3.0 2814 - 0.2843
3.0384 2850 0.0001 -
3.0917 2900 0.0001 -
3.1450 2950 0.0001 -
3.1983 3000 0.0001 -
3.2516 3050 0.0002 -
3.3049 3100 0.0001 -
3.3582 3150 0.0001 -
3.4115 3200 0.0001 -
3.4648 3250 0.0001 -
3.5181 3300 0.0 -
3.5714 3350 0.0001 -
3.6247 3400 0.0 -
3.6780 3450 0.0 -
3.7313 3500 0.0001 -
3.7846 3550 0.0001 -
3.8380 3600 0.0002 -
3.8913 3650 0.0001 -
3.9446 3700 0.0002 -
3.9979 3750 0.0 -
4.0 3752 - 0.2861
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.3
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.21.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
17
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for subham18/setfit-paraphrase-mpnet-base-v2-twitter-sentiment-cleaned-73

Finetuned
(256)
this model

Evaluation results