|
--- |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: "RT @Lrihendry: #TedCruz headed into the Presidential Debates. GO TED!! \n\ |
|
\n#GOPDebates http://t.co/8S67pz8a4A" |
|
- text: 'One thing in the debate was evident, apart from Trump, Rand Paul is the most |
|
absurd choice for a candidate. #GOPDebate' |
|
- text: "RT @aqv21: How #Hillary Looked When Watching #CarlyFiorina #GOPDebate #Carly2016\ |
|
\ #tcot #pjnet #ccot #tlot #RedNationRising http://t.co/aYgMâ\x80¦" |
|
- text: 'Who do you think won the #GOPDebate last night?' |
|
- text: '@RealAlexJones @libertytarian @JakariJax @LeeAnnMcAdoo Wether @realDonaldTrump |
|
is a trojan horse or not, is he worth a punt? #GOPDebate' |
|
inference: true |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.5306666666666666 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 3 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| Positive | <ul><li>'.@JohnKasich won this debate with a little home field advantage. #GOPDebates'</li><li>'RT @Mike_Surtel: @megynkelly your questions were more like attacks on @realDonaldTrump. Then u get upset when he got tough with u! What a jâ\x80¦'</li><li>'RT @kwrcrow: Congrats to @realDonaldTrump for your win in #GOPDebates polling last night. @Time @DRUDGE_REPORT Well done Sir! http://t.co/nâ\x80¦'</li></ul> | |
|
| Neutral | <ul><li>'RT @CharleneCac: So does his position on Iran mean that Rick Perry is also pro-divestment from Israel? #GOPDebate'</li><li>"We Watched The Debate With A Bunch Of Conservative Activists. Here's How They Reacted #GOPDebate http://t.co/Ug21fI5FcE via @dailycaller"</li><li>"I loved the cluelessness of invoking Reagan's name on #IranDeal at #GOPDebate considering Reagan made deals w/ them."</li></ul> | |
|
| Negative | <ul><li>"beeteedubs. If you have to play 'Lesser-of-17-Evils' with your party ... perhaps you need a new party. #p2 #tcot #GOPDebate"</li><li>"RT @Ornyadams: Single payer... no way! I would miss paying ten different bills after my annual physical. Where's the fun in writing one cheâ\x80¦"</li><li>"RT @madyclahane: srry rather not have decisions over my body being made by men that can't count to two #GOPDebate https://t.co/1Ps81yQaOl"</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.5307 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("subham18/setfit-paraphrase-mpnet-base-v2-twitter-sentiment") |
|
# Run inference |
|
preds = model("Who do you think won the #GOPDebate last night?") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 8 | 18.0833 | 25 | |
|
|
|
| Label | Training Sample Count | |
|
|:---------|:----------------------| |
|
| Negative | 8 | |
|
| Positive | 8 | |
|
| Neutral | 8 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (4, 4) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:------:|:-------------:|:---------------:| |
|
| 0.0417 | 1 | 0.2934 | - | |
|
| 1.0 | 24 | - | 0.263 | |
|
| **2.0** | **48** | **-** | **0.2555** | |
|
| 2.0833 | 50 | 0.0091 | - | |
|
| 3.0 | 72 | - | 0.2598 | |
|
| 4.0 | 96 | - | 0.261 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.12.3 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.39.0 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |