File size: 34,288 Bytes
54dfc77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
---
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:555
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What does this text say about unclassified?
sentences:
- "these sources. \nErrors in third-party GAI components can also have downstream\
\ impacts on accuracy and robustness. \nFor example, test datasets commonly used\
\ to benchmark or validate models can contain label errors. \nInaccuracies in\
\ these labels can impact the “stability” or robustness of these benchmarks, which\
\ many \nGAI practitioners consider during the model selection process. \nTrustworthy\
\ AI Characteristics: Accountable and Transparent, Explainable and Interpretable,\
\ Fair with \nHarmful Bias Managed, Privacy Enhanced, Safe, Secure and Resilient,\
\ Valid and Reliable \n3. \nSuggested Actions to Manage GAI Risks \nThe following\
\ suggested actions target risks unique to or exacerbated by GAI. \nIn addition\
\ to the suggested actions below, AI risk management activities and actions set\
\ forth in the AI \nRMF 1.0 and Playbook are already applicable for managing GAI\
\ risks. Organizations are encouraged to"
- "and hardware vulnerabilities; labor practices; data privacy and localization\
\ \ncompliance; geopolitical alignment). \nData Privacy; Information Security;\
\ \nValue Chain and Component \nIntegration; Harmful Bias and \nHomogenization\
\ \nMG-3.1-003 \nRe-assess model risks after fine-tuning or retrieval-augmented\
\ generation \nimplementation and for any third-party GAI models deployed for\
\ applications \nand/or use cases that were not evaluated in initial testing.\
\ \nValue Chain and Component \nIntegration \nMG-3.1-004 \nTake reasonable measures\
\ to review training data for CBRN information, and \nintellectual property, and\
\ where appropriate, remove it. Implement reasonable \nmeasures to prevent, flag,\
\ or take other action in response to outputs that \nreproduce particular training\
\ data (e.g., plagiarized, trademarked, patented, \nlicensed content or trade\
\ secret material). \nIntellectual Property; CBRN \nInformation or Capabilities\
\ \n \n43"
- "• \nStage of the AI lifecycle: Risks can arise during design, development, deployment,\
\ operation, \nand/or decommissioning. \n• \nScope: Risks may exist at individual\
\ model or system levels, at the application or implementation \nlevels (i.e.,\
\ for a specific use case), or at the ecosystem level – that is, beyond a single\
\ system or \norganizational context. Examples of the latter include the expansion\
\ of “algorithmic \nmonocultures,3” resulting from repeated use of the same model,\
\ or impacts on access to \nopportunity, labor markets, and the creative economies.4\
\ \n• \nSource of risk: Risks may emerge from factors related to the design, training,\
\ or operation of the \nGAI model itself, stemming in some cases from GAI model\
\ or system inputs, and in other cases, \nfrom GAI system outputs. Many GAI risks,\
\ however, originate from human behavior, including \n \n \n3 “Algorithmic monocultures”\
\ refers to the phenomenon in which repeated use of the same model or algorithm\
\ in"
- source_sentence: What does this text say about unclassified?
sentences:
- "Security; Dangerous, Violent, or \nHateful Content \n \n34 \nMS-2.7-009 Regularly\
\ assess and verify that security measures remain effective and have not \nbeen\
\ compromised. \nInformation Security \nAI Actor Tasks: AI Deployment, AI Impact\
\ Assessment, Domain Experts, Operation and Monitoring, TEVV \n \nMEASURE 2.8:\
\ Risks associated with transparency and accountability – as identified in the\
\ MAP function – are examined and \ndocumented. \nAction ID \nSuggested Action\
\ \nGAI Risks \nMS-2.8-001 \nCompile statistics on actual policy violations, take-down\
\ requests, and intellectual \nproperty infringement for organizational GAI systems:\
\ Analyze transparency \nreports across demographic groups, languages groups.\
\ \nIntellectual Property; Harmful Bias \nand Homogenization \nMS-2.8-002 Document\
\ the instructions given to data annotators or AI red-teamers. \nHuman-AI Configuration\
\ \nMS-2.8-003 \nUse digital content transparency solutions to enable the documentation\
\ of each"
- "information during GAI training and maintenance. \nHuman-AI Configuration; Obscene,\
\ \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration;\
\ \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or\
\ levels of harmful bias, intellectual property infringement, \ndata privacy violations,\
\ obscenity, extremism, violence, or CBRN information in \nsystem training data.\
\ \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive\
\ Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful\
\ Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety\
\ features of fine-tuned models when the negative risk exceeds \norganizational\
\ risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review\
\ GAI system outputs for validity and safety: Review generated code to \nassess\
\ risks that may arise from unreliable downstream decision-making. \nValue Chain\
\ and Component \nIntegration; Dangerous, Violent, or \nHateful Content"
- "Information Integrity; Harmful Bias \nand Homogenization \nAI Actor Tasks: AI\
\ Deployment, AI Impact Assessment, Domain Experts, End-Users, Operation and Monitoring,\
\ TEVV \n \nMEASURE 2.10: Privacy risk of the AI system – as identified in the\
\ MAP function – is examined and documented. \nAction ID \nSuggested Action \n\
GAI Risks \nMS-2.10-001 \nConduct AI red-teaming to assess issues such as: Outputting\
\ of training data \nsamples, and subsequent reverse engineering, model extraction,\
\ and \nmembership inference risks; Revealing biometric, confidential, copyrighted,\
\ \nlicensed, patented, personal, proprietary, sensitive, or trade-marked information;\
\ \nTracking or revealing location information of users or members of training\
\ \ndatasets. \nHuman-AI Configuration; \nInformation Integrity; Intellectual \n\
Property \nMS-2.10-002 \nEngage directly with end-users and other stakeholders\
\ to understand their \nexpectations and concerns regarding content provenance.\
\ Use this feedback to"
- source_sentence: What does this text say about risk management?
sentences:
- "robust watermarking techniques and corresponding detectors to identify the source\
\ of content or \nmetadata recording techniques and metadata management tools\
\ and repositories to trace content \norigins and modifications. Further narrowing\
\ of GAI task definitions to include provenance data can \nenable organizations\
\ to maximize the utility of provenance data and risk management efforts. \nA.1.7.\
\ Enhancing Content Provenance through Structured Public Feedback \nWhile indirect\
\ feedback methods such as automated error collection systems are useful, they\
\ often lack \nthe context and depth that direct input from end users can provide.\
\ Organizations can leverage feedback \napproaches described in the Pre-Deployment\
\ Testing section to capture input from external sources such \nas through AI\
\ red-teaming. \nIntegrating pre- and post-deployment external feedback into\
\ the monitoring process for GAI models and"
- "tools for monitoring third-party GAI risks; Consider policy adjustments across\
\ GAI \nmodeling libraries, tools and APIs, fine-tuned models, and embedded tools;\
\ \nAssess GAI vendors, open-source or proprietary GAI tools, or GAI service \n\
providers against incident or vulnerability databases. \nData Privacy; Human-AI\
\ \nConfiguration; Information \nSecurity; Intellectual Property; \nValue Chain\
\ and Component \nIntegration; Harmful Bias and \nHomogenization \nGV-6.1-010\
\ \nUpdate GAI acceptable use policies to address proprietary and open-source\
\ GAI \ntechnologies and data, and contractors, consultants, and other third-party\
\ \npersonnel. \nIntellectual Property; Value Chain \nand Component Integration\
\ \nAI Actor Tasks: Operation and Monitoring, Procurement, Third-party entities\
\ \n \nGOVERN 6.2: Contingency processes are in place to handle failures or incidents\
\ in third-party data or AI systems deemed to be \nhigh-risk. \nAction ID \nSuggested\
\ Action \nGAI Risks \nGV-6.2-001"
- "MEASURE 2.3: AI system performance or assurance criteria are measured qualitatively\
\ or quantitatively and demonstrated for \nconditions similar to deployment setting(s).\
\ Measures are documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-2.3-001\
\ Consider baseline model performance on suites of benchmarks when selecting a\
\ \nmodel for fine tuning or enhancement with retrieval-augmented generation. \n\
Information Security; \nConfabulation \nMS-2.3-002 Evaluate claims of model capabilities\
\ using empirically validated methods. \nConfabulation; Information \nSecurity\
\ \nMS-2.3-003 Share results of pre-deployment testing with relevant GAI Actors,\
\ such as those \nwith system release approval authority. \nHuman-AI Configuration\
\ \n \n31 \nMS-2.3-004 \nUtilize a purpose-built testing environment such as NIST\
\ Dioptra to empirically \nevaluate GAI trustworthy characteristics. \nCBRN Information\
\ or Capabilities; \nData Privacy; Confabulation; \nInformation Integrity; Information\
\ \nSecurity; Dangerous, Violent, or"
- source_sentence: What does this text say about unclassified?
sentences:
- "techniques such as re-sampling, re-ranking, or adversarial training to mitigate\
\ \nbiases in the generated content. \nInformation Security; Harmful Bias \nand\
\ Homogenization \nMG-2.2-005 \nEngage in due diligence to analyze GAI output\
\ for harmful content, potential \nmisinformation, and CBRN-related or NCII content.\
\ \nCBRN Information or Capabilities; \nObscene, Degrading, and/or \nAbusive Content;\
\ Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful Content\
\ \n \n41 \nMG-2.2-006 \nUse feedback from internal and external AI Actors, users,\
\ individuals, and \ncommunities, to assess impact of AI-generated content. \n\
Human-AI Configuration \nMG-2.2-007 \nUse real-time auditing tools where they can\
\ be demonstrated to aid in the \ntracking and validation of the lineage and authenticity\
\ of AI-generated data. \nInformation Integrity \nMG-2.2-008 \nUse structured\
\ feedback mechanisms to solicit and capture user input about AI-\ngenerated content\
\ to detect subtle shifts in quality or alignment with"
- "Human-AI Configuration; Value \nChain and Component Integration \nMP-5.2-002 \n\
Plan regular engagements with AI Actors responsible for inputs to GAI systems,\
\ \nincluding third-party data and algorithms, to review and evaluate unanticipated\
\ \nimpacts. \nHuman-AI Configuration; Value \nChain and Component Integration\
\ \nAI Actor Tasks: AI Deployment, AI Design, AI Impact Assessment, Affected Individuals\
\ and Communities, Domain Experts, End-\nUsers, Human Factors, Operation and Monitoring\
\ \n \nMEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated\
\ during the MAP function are selected for \nimplementation starting with the\
\ most significant AI risks. The risks or trustworthiness characteristics that\
\ will not – or cannot – be \nmeasured are properly documented. \nAction ID \n\
Suggested Action \nGAI Risks \nMS-1.1-001 Employ methods to trace the origin and\
\ modifications of digital content. \nInformation Integrity \nMS-1.1-002"
- "input them directly to a GAI system, with a variety of downstream negative consequences\
\ to \ninterconnected systems. Indirect prompt injection attacks occur when adversaries\
\ remotely (i.e., without \na direct interface) exploit LLM-integrated applications\
\ by injecting prompts into data likely to be \nretrieved. Security researchers\
\ have already demonstrated how indirect prompt injections can exploit \nvulnerabilities\
\ by stealing proprietary data or running malicious code remotely on a machine.\
\ Merely \nquerying a closed production model can elicit previously undisclosed\
\ information about that model. \nAnother cybersecurity risk to GAI is data poisoning,\
\ in which an adversary compromises a training \ndataset used by a model to manipulate\
\ its outputs or operation. Malicious tampering with data or parts \nof the model\
\ could exacerbate risks associated with GAI system outputs. \nTrustworthy AI\
\ Characteristics: Privacy Enhanced, Safe, Secure and Resilient, Valid and Reliable\
\ \n2.10."
- source_sentence: What does this text say about data privacy?
sentences:
- "Property. We also note that some risks are cross-cutting between these categories.\
\ \n \n4 \n1. CBRN Information or Capabilities: Eased access to or synthesis\
\ of materially nefarious \ninformation or design capabilities related to chemical,\
\ biological, radiological, or nuclear (CBRN) \nweapons or other dangerous materials\
\ or agents. \n2. Confabulation: The production of confidently stated but erroneous\
\ or false content (known \ncolloquially as “hallucinations” or “fabrications”)\
\ by which users may be misled or deceived.6 \n3. Dangerous, Violent, or Hateful\
\ Content: Eased production of and access to violent, inciting, \nradicalizing,\
\ or threatening content as well as recommendations to carry out self-harm or\
\ \nconduct illegal activities. Includes difficulty controlling public exposure\
\ to hateful and disparaging \nor stereotyping content. \n4. Data Privacy: Impacts\
\ due to leakage and unauthorized use, disclosure, or de-anonymization of"
- "information during GAI training and maintenance. \nHuman-AI Configuration; Obscene,\
\ \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration;\
\ \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or\
\ levels of harmful bias, intellectual property infringement, \ndata privacy violations,\
\ obscenity, extremism, violence, or CBRN information in \nsystem training data.\
\ \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive\
\ Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful\
\ Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety\
\ features of fine-tuned models when the negative risk exceeds \norganizational\
\ risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review\
\ GAI system outputs for validity and safety: Review generated code to \nassess\
\ risks that may arise from unreliable downstream decision-making. \nValue Chain\
\ and Component \nIntegration; Dangerous, Violent, or \nHateful Content"
- "Scheurer, J. et al. (2023) Technical report: Large language models can strategically\
\ deceive their users \nwhen put under pressure. arXiv. https://arxiv.org/abs/2311.07590\
\ \nShelby, R. et al. (2023) Sociotechnical Harms of Algorithmic Systems: Scoping\
\ a Taxonomy for Harm \nReduction. arXiv. https://arxiv.org/pdf/2210.05791 \n\
Shevlane, T. et al. (2023) Model evaluation for extreme risks. arXiv. https://arxiv.org/pdf/2305.15324\
\ \nShumailov, I. et al. (2023) The curse of recursion: training on generated\
\ data makes models forget. arXiv. \nhttps://arxiv.org/pdf/2305.17493v2 \nSmith,\
\ A. et al. (2023) Hallucination or Confabulation? Neuroanatomy as metaphor in\
\ Large Language \nModels. PLOS Digital Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388\
\ \nSoice, E. et al. (2023) Can large language models democratize access to dual-use\
\ biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809"
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What does this text say about data privacy?',
'information during GAI training and maintenance. \nHuman-AI Configuration; Obscene, \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration; \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or levels of harmful bias, intellectual property infringement, \ndata privacy violations, obscenity, extremism, violence, or CBRN information in \nsystem training data. \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety features of fine-tuned models when the negative risk exceeds \norganizational risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review GAI system outputs for validity and safety: Review generated code to \nassess risks that may arise from unreliable downstream decision-making. \nValue Chain and Component \nIntegration; Dangerous, Violent, or \nHateful Content',
'Scheurer, J. et al. (2023) Technical report: Large language models can strategically deceive their users \nwhen put under pressure. arXiv. https://arxiv.org/abs/2311.07590 \nShelby, R. et al. (2023) Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm \nReduction. arXiv. https://arxiv.org/pdf/2210.05791 \nShevlane, T. et al. (2023) Model evaluation for extreme risks. arXiv. https://arxiv.org/pdf/2305.15324 \nShumailov, I. et al. (2023) The curse of recursion: training on generated data makes models forget. arXiv. \nhttps://arxiv.org/pdf/2305.17493v2 \nSmith, A. et al. (2023) Hallucination or Confabulation? Neuroanatomy as metaphor in Large Language \nModels. PLOS Digital Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388 \nSoice, E. et al. (2023) Can large language models democratize access to dual-use biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 555 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 555 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.2 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 156 tokens</li><li>mean: 199.37 tokens</li><li>max: 256 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What does this text say about trustworthiness?</code> | <code>other systems. <br>Information Integrity; Value Chain <br>and Component Integration <br>MP-2.2-002 <br>Observe and analyze how the GAI system interacts with external networks, and <br>identify any potential for negative externalities, particularly where content <br>provenance might be compromised. <br>Information Integrity <br>AI Actor Tasks: End Users <br> <br>MAP 2.3: Scientific integrity and TEVV considerations are identified and documented, including those related to experimental <br>design, data collection and selection (e.g., availability, representativeness, suitability), system trustworthiness, and construct <br>validation <br>Action ID <br>Suggested Action <br>GAI Risks <br>MP-2.3-001 <br>Assess the accuracy, quality, reliability, and authenticity of GAI output by <br>comparing it to a set of known ground truth data and by using a variety of <br>evaluation methods (e.g., human oversight and automated evaluation, proven <br>cryptographic techniques, review of content inputs). <br>Information Integrity <br> <br>25</code> |
| <code>What does this text say about unclassified?</code> | <code>training and TEVV data; Filtering of hate speech or content in GAI system <br>training data; Prevalence of GAI-generated data in GAI system training data. <br>Harmful Bias and Homogenization <br> <br> <br>15 Winogender Schemas is a sample set of paired sentences which differ only by gender of the pronouns used, <br>which can be used to evaluate gender bias in natural language processing coreference resolution systems. <br> <br>37 <br>MS-2.11-005 <br>Assess the proportion of synthetic to non-synthetic training data and verify <br>training data is not overly homogenous or GAI-produced to mitigate concerns of <br>model collapse. <br>Harmful Bias and Homogenization <br>AI Actor Tasks: AI Deployment, AI Impact Assessment, Affected Individuals and Communities, Domain Experts, End-Users, <br>Operation and Monitoring, TEVV <br> <br>MEASURE 2.12: Environmental impact and sustainability of AI model training and management activities – as identified in the MAP <br>function – are assessed and documented. <br>Action ID <br>Suggested Action <br>GAI Risks</code> |
| <code>What does this text say about unclassified?</code> | <code>Padmakumar, V. et al. (2024) Does writing with language models reduce content diversity? ICLR. <br>https://arxiv.org/pdf/2309.05196 <br>Park, P. et. al. (2024) AI deception: A survey of examples, risks, and potential solutions. Patterns, 5(5). <br>arXiv. https://arxiv.org/pdf/2308.14752 <br>Partnership on AI (2023) Building a Glossary for Synthetic Media Transparency Methods, Part 1: Indirect <br>Disclosure. https://partnershiponai.org/glossary-for-synthetic-media-transparency-methods-part-1-<br>indirect-disclosure/ <br>Qu, Y. et al. (2023) Unsafe Diffusion: On the Generation of Unsafe Images and Hateful Memes From Text-<br>To-Image Models. arXiv. https://arxiv.org/pdf/2305.13873 <br>Rafat, K. et al. (2023) Mitigating carbon footprint for knowledge distillation based deep learning model <br>compression. PLOS One. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285668 <br>Said, I. et al. (2022) Nonconsensual Distribution of Intimate Images: Exploring the Role of Legal Attitudes</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cpu
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |