Model Card for GLiNER-ko
GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
This version has been trained on the various Korean NER dataset (Research purpose). Commercially permission versions are available (urchade/gliner_smallv2, urchade/gliner_mediumv2, urchade/gliner_largev2)
Links
- Paper: https://arxiv.org/abs/2311.08526
- Repository: https://github.com/urchade/GLiNER
Installation
To use this model, you must install the Korean fork of GLiNER Python library and mecab-ko:
!pip install gliner
!pip install python-mecab-ko
Usage
Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using GLiNER.from_pretrained
and predict entities with predict_entities
.
from gliner import GLiNER
model = GLiNER.from_pretrained("taeminlee/gliner_ko")
text = """
νΌν° μμ¨ κ²½(, 1961λ
10μ 31μΌ ~ )μ λ΄μ§λλμ μν κ°λ
, κ°λ³Έκ°, μν νλ‘λμμ΄λ€. J. R. R. ν¨ν¨μ μμ€μ μμμΌλ‘ ν γλ°μ§μ μ μ μν 3λΆμγ(2001λ
~2003λ
)μ κ°λ
μΌλ‘ κ°μ₯ μ λͺ
νλ€. 2005λ
μλ 1933λ
μ νΉμ½©μ 리λ©μ΄ν¬μ γνΉμ½©(2005)γμ κ°λ
μ 맑μλ€.
"""
tta_labels = ["ARTIFACTS", "ANIMAL", "CIVILIZATION", "DATE", "EVENT", "STUDY_FIELD", "LOCATION", "MATERIAL", "ORGANIZATION", "PERSON", "PLANT", "QUANTITY", "TIME", "TERM", "THEORY"]
entities = model.predict_entities(text, labels)
for entity in entities:
print(entity["text"], "=>", entity["label"])
νΌν° μμ¨ κ²½ => PERSON
1961λ
10μ 31μΌ ~ => DATE
λ΄μ§λλ => LOCATION
μν κ°λ
=> CIVILIZATION
κ°λ³Έκ° => CIVILIZATION
μν => CIVILIZATION
νλ‘λμ => CIVILIZATION
J. R. R. ν¨ν¨ => PERSON
3λΆμ => QUANTITY
2001λ
~2003λ
=> DATE
κ°λ
=> CIVILIZATION
2005λ
=> DATE
1933λ
μ => DATE
νΉμ½© => ARTIFACTS
νΉμ½© => ARTIFACTS
2005 => DATE
κ°λ
=> CIVILIZATION
Named Entity Recognition benchmark result
Evaluate with the konne dev set
Model | Precision (P) | Recall (R) | F1 |
---|---|---|---|
Gliner-ko (t=0.5) | 72.51% | 79.82% | 75.99% |
Gliner Large-v2 (t=0.5) | 34.33% | 19.50% | 24.87% |
Gliner Multi (t=0.5) | 40.94% | 34.18% | 37.26% |
Pororo | 70.25% | 57.94% | 63.50% |
Model Authors
The model authors are:
- Taemin Lee
- Urchade Zaratiana
- Nadi Tomeh
- Pierre Holat
- Thierry Charnois
Citation
@misc{zaratiana2023gliner,
title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer},
author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
year={2023},
eprint={2311.08526},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 364