File size: 2,214 Bytes
d5b073a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
base_model: openai/clip-vit-large-patch14-336
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: clip-vit-large-patch14-336-finetuned-openai-clip-vit-large-patch14-336-emnist-letter
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clip-vit-large-patch14-336-finetuned-openai-clip-vit-large-patch14-336-emnist-letter
This model is a fine-tuned version of [openai/clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1417
- Accuracy: 0.9489
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.8898 | 0.9994 | 877 | 0.3490 | 0.8834 |
| 0.8457 | 2.0 | 1755 | 0.2191 | 0.9224 |
| 0.7238 | 2.9994 | 2632 | 0.2113 | 0.9263 |
| 0.6685 | 4.0 | 3510 | 0.1838 | 0.9348 |
| 0.6236 | 4.9994 | 4387 | 0.2217 | 0.9205 |
| 0.6011 | 6.0 | 5265 | 0.1732 | 0.9386 |
| 0.6129 | 6.9994 | 6142 | 0.1582 | 0.9419 |
| 0.5606 | 8.0 | 7020 | 0.1478 | 0.9465 |
| 0.5136 | 8.9994 | 7897 | 0.1488 | 0.9458 |
| 0.4659 | 9.9943 | 8770 | 0.1417 | 0.9489 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|