tanliboy's picture
End of training
5a81f6a verified
|
raw
history blame
3.19 kB
metadata
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
  - tanliboy/orca_dpo_pairs
model-index:
  - name: lambda-llama-3-8b-dpo-test-orca
    results: []

lambda-llama-3-8b-dpo-test-orca

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the HuggingFaceH4/ultrafeedback_binarized and the tanliboy/orca_dpo_pairs datasets. It achieves the following results on the evaluation set:

  • Loss: 0.4795
  • Rewards/chosen: -1.6860
  • Rewards/rejected: -2.8132
  • Rewards/accuracies: 0.7259
  • Rewards/margins: 1.1272
  • Logps/rejected: -645.5051
  • Logps/chosen: -549.3651
  • Logits/rejected: -2.6630
  • Logits/chosen: -2.5985

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6011 0.1744 100 0.5738 -0.8770 -1.2808 0.6988 0.4038 -492.2603 -468.4565 -2.4544 -2.4042
0.5447 0.3489 200 0.5242 -1.3236 -2.0879 0.7289 0.7644 -572.9752 -513.1177 -2.6319 -2.5732
0.5173 0.5233 300 0.5003 -1.6828 -2.6810 0.7259 0.9982 -632.2809 -549.0404 -2.6140 -2.5556
0.5144 0.6978 400 0.4851 -1.7107 -2.8135 0.7319 1.1028 -645.5279 -551.8306 -2.7027 -2.6365
0.5162 0.8722 500 0.4798 -1.7085 -2.8440 0.7259 1.1355 -648.5815 -551.6072 -2.6442 -2.5812

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1