metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: whisper-tiny-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.91
whisper-tiny-finetuned-gtzan
This model is a fine-tuned version of openai/whisper-tiny on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6420
- Accuracy: 0.91
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9835 | 0.33 | 37 | 1.4610 | 0.62 |
1.5031 | 0.65 | 74 | 1.1531 | 0.63 |
1.1644 | 0.98 | 111 | 0.8526 | 0.73 |
0.9035 | 1.31 | 148 | 0.8748 | 0.69 |
0.7942 | 1.64 | 185 | 0.7811 | 0.78 |
0.8435 | 1.96 | 222 | 0.8262 | 0.7 |
0.5999 | 2.29 | 259 | 0.6450 | 0.72 |
0.6187 | 2.62 | 296 | 0.6616 | 0.79 |
0.6329 | 2.95 | 333 | 0.6479 | 0.81 |
0.3549 | 3.27 | 370 | 0.6246 | 0.78 |
0.3362 | 3.6 | 407 | 0.5348 | 0.81 |
0.3329 | 3.93 | 444 | 0.4657 | 0.85 |
0.2224 | 4.26 | 481 | 0.4433 | 0.89 |
0.208 | 4.58 | 518 | 0.6448 | 0.84 |
0.1983 | 4.91 | 555 | 0.6080 | 0.86 |
0.1736 | 5.24 | 592 | 0.6201 | 0.86 |
0.0976 | 5.57 | 629 | 0.6952 | 0.87 |
0.025 | 5.89 | 666 | 0.5872 | 0.9 |
0.0509 | 6.22 | 703 | 0.5845 | 0.91 |
0.1474 | 6.55 | 740 | 0.6800 | 0.89 |
0.0594 | 6.88 | 777 | 0.6280 | 0.87 |
0.0023 | 7.2 | 814 | 0.6850 | 0.88 |
0.0058 | 7.53 | 851 | 0.6766 | 0.89 |
0.023 | 7.86 | 888 | 0.8498 | 0.87 |
0.0272 | 8.19 | 925 | 0.7815 | 0.86 |
0.0011 | 8.51 | 962 | 0.6570 | 0.9 |
0.0012 | 8.84 | 999 | 0.6395 | 0.91 |
0.023 | 9.17 | 1036 | 0.6412 | 0.91 |
0.0009 | 9.5 | 1073 | 0.6416 | 0.91 |
0.001 | 9.82 | 1110 | 0.6420 | 0.91 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3