EstBERT128_Rubric
This model is a fine-tuned version of tartuNLP/EstBERT. It achieves the following results on the test set:
- Loss: 2.0552
- Accuracy: 0.8329
How to use?
You can use this model with the Transformers pipeline for text classification.
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("tartuNLP/EstBERT128_Rubric")
model = AutoModelForSequenceClassification.from_pretrained("tartuNLP/EstBERT128_Rubric")
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
text = "Kaia Kanepi (WTA 57.) langes USA-s Charlestonis toimuval WTA 500 kategooria tenniseturniiril konkurentsist kaheksandikfinaalis, kaotades poolatarile Magda Linette'ile (WTA 64.) 3 : 6, 6 : 4, 2 : 6."
result = nlp(text)
print(result)
[{'label': 'SPORT', 'score': 0.9999998807907104}]
Model description
A single linear layer classifier is fit on top of the last layer [CLS] token representation of the EstBERT model. The model is fully fine-tuned during training.
Intended uses & limitations
This model is intended to be used as it is. We hope that it can prove to be useful to somebody but we do not guarantee that the model is useful for anything or that the predictions are accurate on new data.
Citation information
If you use this model, please cite:
@inproceedings{tanvir2021estbert,
title={EstBERT: A Pretrained Language-Specific BERT for Estonian},
author={Tanvir, Hasan and Kittask, Claudia and Eiche, Sandra and Sirts, Kairit},
booktitle={Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
pages={11--19},
year={2021}
}
Training and evaluation data
The model was trained and evaluated on the rubric categories of the Estonian Valence dataset. The data was split into train/dev/test parts with 70/10/20 proportions.
The nine rubric labels in the Estonian Valence dataset are:
- ARVAMUS (opinion)
- EESTI (domestic)
- ELU-O (life)
- KOMM-O-ELU (comments)
- KOMM-P-EESTI (comments)
- KRIMI (crime)
- KULTUUR (culture)
- SPORT (sports)
- VALISMAA (world)
It probably makes sense to treat the two comments categories (KOMM-O-ELU and KOMM-P-EESTI) as a single category.
Training procedure
The model was trained for maximu 100 epochs using early stopping procedure. After every epoch, the accuracy was calculated on the development set. If the development set accuracy did not improve for 20 epochs, the training was stopped.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
- lr_scheduler_type: polynomial
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
The final model was taken after 39th epoch.
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1147 | 1.0 | 179 | 0.7421 | 0.7445 |
0.4323 | 2.0 | 358 | 0.6863 | 0.7813 |
0.1442 | 3.0 | 537 | 0.8545 | 0.7838 |
0.0496 | 4.0 | 716 | 1.2872 | 0.7494 |
0.0276 | 5.0 | 895 | 1.4702 | 0.7641 |
0.0202 | 6.0 | 1074 | 1.3764 | 0.7838 |
0.0144 | 7.0 | 1253 | 1.5762 | 0.7887 |
0.0078 | 8.0 | 1432 | 1.8806 | 0.7666 |
0.0177 | 9.0 | 1611 | 1.6159 | 0.7912 |
0.0223 | 10.0 | 1790 | 1.5863 | 0.7936 |
0.0108 | 11.0 | 1969 | 1.8051 | 0.7912 |
0.0201 | 12.0 | 2148 | 1.9344 | 0.7789 |
0.0252 | 13.0 | 2327 | 1.7978 | 0.8084 |
0.0104 | 14.0 | 2506 | 1.8779 | 0.7887 |
0.0138 | 15.0 | 2685 | 1.6456 | 0.8133 |
0.0066 | 16.0 | 2864 | 1.9668 | 0.7912 |
0.0148 | 17.0 | 3043 | 2.0068 | 0.7813 |
0.0128 | 18.0 | 3222 | 2.1539 | 0.7617 |
0.0115 | 19.0 | 3401 | 2.2490 | 0.7838 |
0.0186 | 20.0 | 3580 | 2.1768 | 0.7666 |
0.0051 | 21.0 | 3759 | 1.8859 | 0.7912 |
0.001 | 22.0 | 3938 | 2.0132 | 0.7912 |
0.0133 | 23.0 | 4117 | 1.8786 | 0.8084 |
0.0149 | 24.0 | 4296 | 2.2307 | 0.7961 |
0.014 | 25.0 | 4475 | 2.0041 | 0.8206 |
0.0132 | 26.0 | 4654 | 1.8872 | 0.8133 |
0.0079 | 27.0 | 4833 | 1.9357 | 0.7961 |
0.0078 | 28.0 | 5012 | 2.1891 | 0.7936 |
0.0126 | 29.0 | 5191 | 2.0207 | 0.8034 |
0.0003 | 30.0 | 5370 | 2.1917 | 0.8010 |
0.0015 | 31.0 | 5549 | 2.0417 | 0.8157 |
0.0056 | 32.0 | 5728 | 2.1172 | 0.8084 |
0.0058 | 33.0 | 5907 | 2.1921 | 0.8206 |
0.0001 | 34.0 | 6086 | 2.0079 | 0.8206 |
0.0031 | 35.0 | 6265 | 2.2447 | 0.8206 |
0.0007 | 36.0 | 6444 | 2.1802 | 0.8084 |
0.0061 | 37.0 | 6623 | 2.1103 | 0.8157 |
0.0 | 38.0 | 6802 | 2.2265 | 0.8084 |
0.0035 | 39.0 | 6981 | 2.0549 | 0.8329 |
0.0038 | 40.0 | 7160 | 2.1352 | 0.8182 |
0.0001 | 41.0 | 7339 | 2.0975 | 0.8108 |
0.0 | 42.0 | 7518 | 2.0833 | 0.8256 |
0.0 | 43.0 | 7697 | 2.1020 | 0.8280 |
0.0 | 44.0 | 7876 | 2.0841 | 0.8305 |
0.0 | 45.0 | 8055 | 2.2085 | 0.8182 |
0.0 | 46.0 | 8234 | 2.0756 | 0.8329 |
0.0 | 47.0 | 8413 | 2.1237 | 0.8305 |
0.0 | 48.0 | 8592 | 2.1217 | 0.8280 |
0.0052 | 49.0 | 8771 | 2.3567 | 0.8059 |
0.0014 | 50.0 | 8950 | 2.1710 | 0.8206 |
0.0032 | 51.0 | 9129 | 2.1452 | 0.8206 |
0.0 | 52.0 | 9308 | 2.2820 | 0.8133 |
0.0001 | 53.0 | 9487 | 2.2279 | 0.8157 |
0.0 | 54.0 | 9666 | 2.1841 | 0.8182 |
0.0 | 55.0 | 9845 | 2.1208 | 0.8231 |
0.0 | 56.0 | 10024 | 2.0967 | 0.8256 |
0.0002 | 57.0 | 10203 | 2.1911 | 0.8231 |
0.0 | 58.0 | 10382 | 2.2014 | 0.8231 |
0.0 | 59.0 | 10561 | 2.2014 | 0.8182 |
Framework versions
- Transformers 4.14.1
- Pytorch 1.10.1+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
Contact
Kairit Sirts: kairit.sirts@ut.ee
- Downloads last month
- 14
Model tree for tartuNLP/EstBERT128_Rubric
Evaluation results
- Accuracyself-reported0.833