EstBERT_NER / README.md
adorkin's picture
Add base model info
0c0e700 verified
metadata
language: et
license: cc-by-4.0
base_model: tartuNLP/EstBERT
widget:
  - text: Eesti President on Alar Karis.

EstBERT_NER

Model description

EstBERT_NER is a fine-tuned EstBERT model that can be used for Named Entity Recognition. This model was trained on the Estonian NER dataset created by Tkachenko et al. It can recognize three types of entities: locations (LOC), organizations (ORG) and persons (PER).

How to use

You can use this model with Transformers pipeline for NER. Post-processing of results may be necessary as the model occasionally tags subword tokens as entities.

from transformers import BertTokenizer, BertForTokenClassification
from transformers import pipeline

tokenizer = BertTokenizer.from_pretrained('tartuNLP/EstBERT_NER')
bertner = BertForTokenClassification.from_pretrained('tartuNLP/EstBERT_NER')

nlp = pipeline("ner", model=bertner, tokenizer=tokenizer)
sentence = 'Eesti Ekspressi teada on Eesti Pank uurinud Hansapanga tehinguid , mis toimusid kaks aastat tagasi suvel ja mille käigus voolas panka ligi miljardi krooni ulatuses kahtlast raha .'

ner_results = nlp(sentence)
print(ner_results)
[{'word': 'Eesti', 'score': 0.9964128136634827, 'entity': 'B-ORG', 'index': 1}, {'word': 'Ekspressi', 'score': 0.9978809356689453, 'entity': 'I-ORG', 'index': 2}, {'word': 'Eesti', 'score': 0.9988121390342712, 'entity': 'B-ORG', 'index': 5}, {'word': 'Pank', 'score': 0.9985784292221069, 'entity': 'I-ORG', 'index': 6}, {'word': 'Hansapanga', 'score': 0.9979034662246704, 'entity': 'B-ORG', 'index': 8}]

BibTeX entry and citation info

@misc{tanvir2020estbert,
      title={EstBERT: A Pretrained Language-Specific BERT for Estonian}, 
      author={Hasan Tanvir and Claudia Kittask and Kairit Sirts},
      year={2020},
      eprint={2011.04784},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}