Edit model card

turkic-cyrillic-classifier

This model is a fine-tuned version of bert-base-multilingual-cased on an tatiana-merz/cyrillic_turkic_langs dataset. It achieves the following results on the evaluation set:

{'test_loss': 0.013604652136564255,
 'test_accuracy': 0.997,
 'test_f1': 0.9969996069718668,
 'test_runtime': 60.5479,
 'test_samples_per_second': 148.643,
 'test_steps_per_second': 2.329}

Model description

The model classifies text based on a provided Turkic language written in Cyrillic script.

Languages

  • bak - Bashkir
  • chv - Chuvash
  • sah - Sakha
  • tat - Tatar
  • kir - Kyrgyz
  • kaz - Kazakh
  • tyv - Tuvinian
  • krc - Karachay-Balkar
  • rus - Russian

Intended uses & limitations

Training and evaluation data

cyrillic_turkic_langs

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.1063 1.0 1000 0.0204 0.9950 0.9950
0.0126 2.0 2000 0.0136 0.9970 0.9970

Framework versions

  • Transformers 4.27.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
Downloads last month
49
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train tatiana-merz/turkic-cyrillic-classifier