|
--- |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- techiaith/banc-trawsgrifiadau-bangor |
|
- generated_from_trainer |
|
datasets: |
|
- banc-trawsgrifiadau-bangor |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-xlsr-ft-btb |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: TECHIAITH/BANC-TRAWSGRIFIADAU-BANGOR - NA |
|
type: banc-trawsgrifiadau-bangor |
|
config: default |
|
split: test |
|
args: 'Config: na, Training split: train, Eval split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.3262315072590479 |
|
language: |
|
- cy |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-xlsr-ft-cy-verbatim |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the |
|
[techiaith/banc-trawsgrifiadau-bangor](https://huggingface.co/datasets/techiaith/banc-trawsgrifiadau-bangor) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4357 |
|
- Wer: 0.3262 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| No log | 0.21 | 100 | 3.4135 | 1.0 | |
|
| No log | 0.41 | 200 | 2.9521 | 1.0 | |
|
| No log | 0.62 | 300 | 2.3339 | 0.9365 | |
|
| No log | 0.83 | 400 | 1.2433 | 0.8259 | |
|
| 3.1912 | 1.03 | 500 | 0.8614 | 0.6385 | |
|
| 3.1912 | 1.24 | 600 | 0.7557 | 0.5612 | |
|
| 3.1912 | 1.44 | 700 | 0.6781 | 0.5195 | |
|
| 3.1912 | 1.65 | 800 | 0.6363 | 0.4879 | |
|
| 3.1912 | 1.86 | 900 | 0.5959 | 0.4559 | |
|
| 0.8237 | 2.06 | 1000 | 0.5430 | 0.4260 | |
|
| 0.8237 | 2.27 | 1100 | 0.5293 | 0.4098 | |
|
| 0.8237 | 2.48 | 1200 | 0.5141 | 0.4056 | |
|
| 0.8237 | 2.68 | 1300 | 0.4879 | 0.3947 | |
|
| 0.8237 | 2.89 | 1400 | 0.4697 | 0.3788 | |
|
| 0.5625 | 3.1 | 1500 | 0.4748 | 0.3780 | |
|
| 0.5625 | 3.3 | 1600 | 0.4836 | 0.3684 | |
|
| 0.5625 | 3.51 | 1700 | 0.4796 | 0.3625 | |
|
| 0.5625 | 3.72 | 1800 | 0.4582 | 0.3515 | |
|
| 0.5625 | 3.92 | 1900 | 0.4395 | 0.3437 | |
|
| 0.4267 | 4.13 | 2000 | 0.4410 | 0.3420 | |
|
| 0.4267 | 4.33 | 2100 | 0.4467 | 0.3382 | |
|
| 0.4267 | 4.54 | 2200 | 0.4398 | 0.3329 | |
|
| 0.4267 | 4.75 | 2300 | 0.4383 | 0.3287 | |
|
| 0.4267 | 4.95 | 2400 | 0.4358 | 0.3264 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu117 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |