Automatic Speech Recognition
TensorBoard
Safetensors
Welsh
wav2vec2
Generated from Trainer
File size: 2,412 Bytes
7db016f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-cv-cy-cand
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xlsr-53-ft-btb-cv-cy-cand

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.3598

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 4.6973        | 0.0714 | 500  | inf             | 1.0    |
| 1.448         | 0.1428 | 1000 | inf             | 0.7574 |
| 1.053         | 0.2142 | 1500 | inf             | 0.6584 |
| 0.9304        | 0.2856 | 2000 | inf             | 0.5963 |
| 0.8755        | 0.3569 | 2500 | inf             | 0.5946 |
| 0.8238        | 0.4283 | 3000 | inf             | 0.5392 |
| 0.7819        | 0.4997 | 3500 | inf             | 0.4967 |
| 0.729         | 0.5711 | 4000 | inf             | 0.4834 |
| 0.6923        | 0.6425 | 4500 | inf             | 0.4564 |
| 0.7052        | 0.7139 | 5000 | inf             | 0.4346 |
| 0.6675        | 0.7853 | 5500 | inf             | 0.4163 |
| 0.6217        | 0.8567 | 6000 | inf             | 0.3962 |
| 0.5954        | 0.9280 | 6500 | inf             | 0.3883 |
| 0.5687        | 0.9994 | 7000 | inf             | 0.3746 |
| 0.477         | 1.0708 | 7500 | inf             | 0.3647 |
| 0.4804        | 1.1422 | 8000 | inf             | 0.3598 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1