|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-xlsr-53-ft-ccv-en-cy |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-xlsr-53-ft-ccv-en-cy |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2754 |
|
- Wer: 0.2115 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 800 |
|
- training_steps: 9000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 6.0574 | 0.25 | 500 | 2.0297 | 0.9991 | |
|
| 1.224 | 0.5 | 1000 | 0.5368 | 0.4342 | |
|
| 0.434 | 0.75 | 1500 | 0.4861 | 0.3891 | |
|
| 0.3295 | 1.01 | 2000 | 0.4301 | 0.3411 | |
|
| 0.2739 | 1.26 | 2500 | 0.3818 | 0.3053 | |
|
| 0.2619 | 1.51 | 3000 | 0.3894 | 0.3060 | |
|
| 0.2517 | 1.76 | 3500 | 0.3497 | 0.2802 | |
|
| 0.2244 | 2.01 | 4000 | 0.3519 | 0.2792 | |
|
| 0.1854 | 2.26 | 4500 | 0.3376 | 0.2718 | |
|
| 0.1779 | 2.51 | 5000 | 0.3206 | 0.2520 | |
|
| 0.1749 | 2.77 | 5500 | 0.3169 | 0.2535 | |
|
| 0.1636 | 3.02 | 6000 | 0.3122 | 0.2465 | |
|
| 0.137 | 3.27 | 6500 | 0.3054 | 0.2382 | |
|
| 0.1311 | 3.52 | 7000 | 0.2956 | 0.2280 | |
|
| 0.1261 | 3.77 | 7500 | 0.2898 | 0.2236 | |
|
| 0.1187 | 4.02 | 8000 | 0.2847 | 0.2176 | |
|
| 0.1011 | 4.27 | 8500 | 0.2763 | 0.2124 | |
|
| 0.0981 | 4.52 | 9000 | 0.2754 | 0.2115 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|