Automatic Speech Recognition
Transformers
Safetensors
Welsh
English
wav2vec2
Inference Endpoints
DewiBrynJones's picture
Training in progress, step 500
820d04f verified
|
raw
history blame
3.04 kB
metadata
language:
  - cy
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - automatic-speech-recognition
  - python/custom_common_voice.py
  - generated_from_trainer
datasets:
  - custom_common_voice
metrics:
  - wer
model-index:
  - name: wav2vec2-xlsr-53-ft-ccv-en-cy
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PYTHON/CUSTOM_COMMON_VOICE.PY - CY
          type: custom_common_voice
          config: cy
          split: validation
          args: 'Config: cy, Training split: train, Eval split: validation'
        metrics:
          - name: Wer
            type: wer
            value: 0.21777283505046477

wav2vec2-xlsr-53-ft-ccv-en-cy

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the PYTHON/CUSTOM_COMMON_VOICE.PY - CY dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2909
  • Wer: 0.2178

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • training_steps: 9000

Training results

Training Loss Epoch Step Validation Loss Wer
5.8377 0.25 500 1.2190 0.8569
0.9829 0.51 1000 0.5585 0.4701
0.45 0.76 1500 0.4735 0.3901
0.3151 1.01 2000 0.4125 0.3418
0.2524 1.26 2500 0.3831 0.3117
0.243 1.52 3000 0.3661 0.3078
0.2341 1.77 3500 0.3489 0.2883
0.211 2.02 4000 0.3500 0.2738
0.1702 2.27 4500 0.3459 0.2704
0.1634 2.53 5000 0.3305 0.2583
0.1608 2.78 5500 0.3137 0.2479
0.1481 3.03 6000 0.3288 0.2562
0.1216 3.28 6500 0.3174 0.2446
0.1181 3.54 7000 0.3000 0.2325
0.1143 3.79 7500 0.2929 0.2326
0.1049 4.04 8000 0.2921 0.2218
0.0913 4.29 8500 0.2968 0.2208
0.0883 4.55 9000 0.2909 0.2178

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3