morriszms's picture
Upload folder using huggingface_hub
4476682 verified
metadata
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
  - language
  - granite-3.0
  - TensorBlock
  - GGUF
base_model: ibm-granite/granite-3.0-3b-a800m-base
model-index:
  - name: granite-3.0-3b-a800m-base
    results:
      - task:
          type: text-generation
        dataset:
          name: MMLU
          type: human-exams
        metrics:
          - type: pass@1
            value: 48.64
            name: pass@1
          - type: pass@1
            value: 18.84
            name: pass@1
          - type: pass@1
            value: 23.81
            name: pass@1
      - task:
          type: text-generation
        dataset:
          name: WinoGrande
          type: commonsense
        metrics:
          - type: pass@1
            value: 65.67
            name: pass@1
          - type: pass@1
            value: 42.2
            name: pass@1
          - type: pass@1
            value: 47.39
            name: pass@1
          - type: pass@1
            value: 78.29
            name: pass@1
          - type: pass@1
            value: 72.79
            name: pass@1
          - type: pass@1
            value: 41.34
            name: pass@1
      - task:
          type: text-generation
        dataset:
          name: BoolQ
          type: reading-comprehension
        metrics:
          - type: pass@1
            value: 75.75
            name: pass@1
          - type: pass@1
            value: 20.96
            name: pass@1
      - task:
          type: text-generation
        dataset:
          name: ARC-C
          type: reasoning
        metrics:
          - type: pass@1
            value: 46.84
            name: pass@1
          - type: pass@1
            value: 24.83
            name: pass@1
          - type: pass@1
            value: 38.93
            name: pass@1
          - type: pass@1
            value: 35.05
            name: pass@1
      - task:
          type: text-generation
        dataset:
          name: HumanEval
          type: code
        metrics:
          - type: pass@1
            value: 26.83
            name: pass@1
          - type: pass@1
            value: 34.6
            name: pass@1
      - task:
          type: text-generation
        dataset:
          name: GSM8K
          type: math
        metrics:
          - type: pass@1
            value: 35.86
            name: pass@1
          - type: pass@1
            value: 17.4
            name: pass@1
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

ibm-granite/granite-3.0-3b-a800m-base - GGUF

This repo contains GGUF format model files for ibm-granite/granite-3.0-3b-a800m-base.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
granite-3.0-3b-a800m-base-Q2_K.gguf Q2_K 1.266 GB smallest, significant quality loss - not recommended for most purposes
granite-3.0-3b-a800m-base-Q3_K_S.gguf Q3_K_S 1.488 GB very small, high quality loss
granite-3.0-3b-a800m-base-Q3_K_M.gguf Q3_K_M 1.644 GB very small, high quality loss
granite-3.0-3b-a800m-base-Q3_K_L.gguf Q3_K_L 1.774 GB small, substantial quality loss
granite-3.0-3b-a800m-base-Q4_0.gguf Q4_0 1.926 GB legacy; small, very high quality loss - prefer using Q3_K_M
granite-3.0-3b-a800m-base-Q4_K_S.gguf Q4_K_S 1.942 GB small, greater quality loss
granite-3.0-3b-a800m-base-Q4_K_M.gguf Q4_K_M 2.059 GB medium, balanced quality - recommended
granite-3.0-3b-a800m-base-Q5_0.gguf Q5_0 2.338 GB legacy; medium, balanced quality - prefer using Q4_K_M
granite-3.0-3b-a800m-base-Q5_K_S.gguf Q5_K_S 2.338 GB large, low quality loss - recommended
granite-3.0-3b-a800m-base-Q5_K_M.gguf Q5_K_M 2.407 GB large, very low quality loss - recommended
granite-3.0-3b-a800m-base-Q6_K.gguf Q6_K 2.776 GB very large, extremely low quality loss
granite-3.0-3b-a800m-base-Q8_0.gguf Q8_0 3.593 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/granite-3.0-3b-a800m-base-GGUF --include "granite-3.0-3b-a800m-base-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/granite-3.0-3b-a800m-base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'