metadata
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Total company-operated stores | 711 | | 655
sentences:
- >-
What type of financial documents are included in Part IV, Item 15(a)(1)
of the Annual Report on Form 10-K?
- >-
What is the total number of company-operated stores as of January 28,
2024?
- >-
When does the 364-day facility entered into in August 2023 expire, and
what is its total amount?
- source_sentence: >-
GM empowers employees to 'Speak Up for Safety' through the Employee Safety
Concern Process which makes it easier for employees to report potential
safety issues or suggest improvements without fear of retaliation and
ensures their safety every day.
sentences:
- >-
What item number is associated with financial statements and
supplementary data in documents?
- How does GM promote safety and well-being among its employees?
- >-
What are the main features included in the Skills for Jobs initiative
launched by Microsoft?
- source_sentence: >-
Under the 2020 Plan, the exercise price of options granted is generally at
least equal to the fair market value of the Company’s Class A common stock
on the date of grant.
sentences:
- >-
How is the exercise price for incentive stock options determined under
Palantir Technologies Inc.’s 2020 Equity Incentive Plan?
- >-
What were the dividend amounts declared by AT&T for its preferred and
common shares in December 2022 and December 2023?
- What does Item 8 in a document usually represent?
- source_sentence: >-
On December 22, 2022, the parties entered into a settlement agreement to
resolve the lawsuit, which provides for a payment of $725 million by us.
The settlement was approved by the court on October 10, 2023, and the
payment was made in November 2023.
sentences:
- >-
What is the purpose of GM's collaboration efforts at their Global
Technical Center in Warren, Michigan?
- >-
How does the acquisition method affect the financial statements after a
business acquisition?
- >-
What was the outcome of the 2019 consumer class action regarding the
company's user data practices?
- source_sentence: >-
Item 8, titled 'Financial Statements and Supplementary Data,' is followed
by an index to these sections.
sentences:
- What section follows Item 8 in the document?
- >-
What is the total assets and shareholders' equity of Chubb Limited as of
December 31, 2023?
- How does AT&T emphasize diversity in its hiring practices?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7385714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8642857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8942857142857142
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9342857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7385714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28809523809523807
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17885714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09342857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7385714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8642857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8942857142857142
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9342857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8387370920568787
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8078395691609976
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8102903092098301
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7414285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8557142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8942857142857142
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9328571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7414285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2852380952380953
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17885714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09328571428571426
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7414285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8557142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8942857142857142
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9328571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8380676321786823
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8075895691609978
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8101143502932845
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7357142857142858
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.85
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8814285714285715
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7357142857142858
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2833333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17628571428571424
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09199999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7357142857142858
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.85
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8814285714285715
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.92
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8286016704428653
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7992942176870748
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8028214002001232
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7142857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.84
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7142857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7142857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.84
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8153680997284491
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7840521541950115
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7875962124214356
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6771428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8085714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8371428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8857142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6771428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26952380952380955
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1674285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08857142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6771428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8085714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8371428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8857142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7840147713456539
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7513815192743762
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.755682487136274
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tessimago/bge-base-financial-matryoshka")
sentences = [
"Item 8, titled 'Financial Statements and Supplementary Data,' is followed by an index to these sections.",
'What section follows Item 8 in the document?',
"What is the total assets and shareholders' equity of Chubb Limited as of December 31, 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7386 |
cosine_accuracy@3 |
0.8643 |
cosine_accuracy@5 |
0.8943 |
cosine_accuracy@10 |
0.9343 |
cosine_precision@1 |
0.7386 |
cosine_precision@3 |
0.2881 |
cosine_precision@5 |
0.1789 |
cosine_precision@10 |
0.0934 |
cosine_recall@1 |
0.7386 |
cosine_recall@3 |
0.8643 |
cosine_recall@5 |
0.8943 |
cosine_recall@10 |
0.9343 |
cosine_ndcg@10 |
0.8387 |
cosine_mrr@10 |
0.8078 |
cosine_map@100 |
0.8103 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7414 |
cosine_accuracy@3 |
0.8557 |
cosine_accuracy@5 |
0.8943 |
cosine_accuracy@10 |
0.9329 |
cosine_precision@1 |
0.7414 |
cosine_precision@3 |
0.2852 |
cosine_precision@5 |
0.1789 |
cosine_precision@10 |
0.0933 |
cosine_recall@1 |
0.7414 |
cosine_recall@3 |
0.8557 |
cosine_recall@5 |
0.8943 |
cosine_recall@10 |
0.9329 |
cosine_ndcg@10 |
0.8381 |
cosine_mrr@10 |
0.8076 |
cosine_map@100 |
0.8101 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7357 |
cosine_accuracy@3 |
0.85 |
cosine_accuracy@5 |
0.8814 |
cosine_accuracy@10 |
0.92 |
cosine_precision@1 |
0.7357 |
cosine_precision@3 |
0.2833 |
cosine_precision@5 |
0.1763 |
cosine_precision@10 |
0.092 |
cosine_recall@1 |
0.7357 |
cosine_recall@3 |
0.85 |
cosine_recall@5 |
0.8814 |
cosine_recall@10 |
0.92 |
cosine_ndcg@10 |
0.8286 |
cosine_mrr@10 |
0.7993 |
cosine_map@100 |
0.8028 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7143 |
cosine_accuracy@3 |
0.84 |
cosine_accuracy@5 |
0.87 |
cosine_accuracy@10 |
0.9129 |
cosine_precision@1 |
0.7143 |
cosine_precision@3 |
0.28 |
cosine_precision@5 |
0.174 |
cosine_precision@10 |
0.0913 |
cosine_recall@1 |
0.7143 |
cosine_recall@3 |
0.84 |
cosine_recall@5 |
0.87 |
cosine_recall@10 |
0.9129 |
cosine_ndcg@10 |
0.8154 |
cosine_mrr@10 |
0.7841 |
cosine_map@100 |
0.7876 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6771 |
cosine_accuracy@3 |
0.8086 |
cosine_accuracy@5 |
0.8371 |
cosine_accuracy@10 |
0.8857 |
cosine_precision@1 |
0.6771 |
cosine_precision@3 |
0.2695 |
cosine_precision@5 |
0.1674 |
cosine_precision@10 |
0.0886 |
cosine_recall@1 |
0.6771 |
cosine_recall@3 |
0.8086 |
cosine_recall@5 |
0.8371 |
cosine_recall@10 |
0.8857 |
cosine_ndcg@10 |
0.784 |
cosine_mrr@10 |
0.7514 |
cosine_map@100 |
0.7557 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 46.25 tokens
- max: 512 tokens
|
- min: 7 tokens
- mean: 20.69 tokens
- max: 42 tokens
|
- Samples:
positive |
anchor |
As of January 28, 2024, we held cash and cash equivalents of $2.2 billion. |
What was the total cash and cash equivalents held by the company as of January 28, 2024? |
Net cash used in financing activities amounted to $1,600 million in fiscal year 2023. |
What was the total net cash used in financing activities in fiscal year 2023? |
Item 8, titled 'Financial Statements and Supplementary Data,' is followed by an index to these sections. |
What section follows Item 8 in the document? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5849 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7610 |
0.7799 |
0.7878 |
0.7254 |
0.7922 |
1.6244 |
20 |
0.6368 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7823 |
0.7974 |
0.8047 |
0.7515 |
0.8046 |
2.4365 |
30 |
0.4976 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7876 |
0.803 |
0.8096 |
0.754 |
0.8081 |
3.2487 |
40 |
0.3845 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7876 |
0.8028 |
0.8101 |
0.7557 |
0.8103 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}