YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
bert-base-uncased fine-tuned with TextAttack on the rotten_tomatoes dataset
This `bert-base-uncased` model was fine-tuned for sequence classificationusing TextAttack
and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned
for 10 epochs with a batch size of 64, a learning
rate of 5e-05, and a maximum sequence length of 128.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.875234521575985, as measured by the
eval set accuracy, found after 4 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.