t5-cnn-sum-v2
This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6814
- Rouge1: 0.2471
- Rouge2: 0.1178
- Rougel: 0.2044
- Rougelsum: 0.2044
- Gen Len: 18.9979
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.8417 | 1.0 | 17945 | 1.6963 | 0.2468 | 0.1178 | 0.2043 | 0.2043 | 18.999 |
1.8344 | 2.0 | 35890 | 1.6837 | 0.2473 | 0.1177 | 0.2045 | 0.2045 | 18.9984 |
1.8235 | 3.0 | 53835 | 1.6814 | 0.2471 | 0.1178 | 0.2044 | 0.2044 | 18.9979 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.15.0
- Downloads last month
- 2
Model tree for thatfaib/t5-cnn-sum-v2
Base model
google-t5/t5-small