|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1625 |
|
- loss:CosineSimilarityLoss |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Boron Steel |
|
sentences: |
|
- Rock Bit |
|
- Spalling Test |
|
- Excavator Bucket |
|
- source_sentence: Friction Wear |
|
sentences: |
|
- Tool Steel |
|
- Medium Carbon Steel |
|
- Diffusion Bonding |
|
- source_sentence: Delamination |
|
sentences: |
|
- Subsea Christmas Tree |
|
- Low Alloyed Steel |
|
- Screw Conveyors |
|
- source_sentence: Nitriding |
|
sentences: |
|
- Subsea Manifold |
|
- Trencher Chain |
|
- Cylinder |
|
- source_sentence: Corrosion Resistant Coatings |
|
sentences: |
|
- Mower Blade |
|
- Gas Metal Arc Welding (GMAW) |
|
- Corrosion Resistant Coatings |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9548051644723275 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6620048542679903 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.985909077336812 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6620048542679903 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9863519709955113 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6620048542679903 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.9548051701614557 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6610658947764548 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9863519709955113 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6620048542679903 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9544417196413574 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6620048542679903 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.9855825558550574 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6620048542679903 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9862004412296757 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6620048542679903 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.9501184326722917 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6607798700248341 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9862004412296757 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6620048542679903 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9494511778471465 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6620048542679903 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.9830259644213172 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6620048542679903 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9835562939431381 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6620048542679903 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.9469313992827345 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6607798700248341 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9835562939431381 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6620048542679903 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9397052405386266 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6620048542679903 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.9762184586055923 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6620048542679903 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9781975526221939 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6620048542679903 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.9271211389022183 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6607798700248341 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9781975526221939 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6620048542679903 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9149032642312528 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6620048542679903 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.968215524939354 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6620048542679903 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9708485057392984 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6620048542679903 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8940456314300972 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6602255244962898 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9708485057392984 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6620048542679903 |
|
name: Spearman Max |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("thetayne/finetuned_model_0613") |
|
# Run inference |
|
sentences = [ |
|
'Corrosion Resistant Coatings', |
|
'Corrosion Resistant Coatings', |
|
'Mower Blade', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.9548 | |
|
| **spearman_cosine** | **0.662** | |
|
| pearson_manhattan | 0.9859 | |
|
| spearman_manhattan | 0.662 | |
|
| pearson_euclidean | 0.9864 | |
|
| spearman_euclidean | 0.662 | |
|
| pearson_dot | 0.9548 | |
|
| spearman_dot | 0.6611 | |
|
| pearson_max | 0.9864 | |
|
| spearman_max | 0.662 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.9544 | |
|
| **spearman_cosine** | **0.662** | |
|
| pearson_manhattan | 0.9856 | |
|
| spearman_manhattan | 0.662 | |
|
| pearson_euclidean | 0.9862 | |
|
| spearman_euclidean | 0.662 | |
|
| pearson_dot | 0.9501 | |
|
| spearman_dot | 0.6608 | |
|
| pearson_max | 0.9862 | |
|
| spearman_max | 0.662 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.9495 | |
|
| **spearman_cosine** | **0.662** | |
|
| pearson_manhattan | 0.983 | |
|
| spearman_manhattan | 0.662 | |
|
| pearson_euclidean | 0.9836 | |
|
| spearman_euclidean | 0.662 | |
|
| pearson_dot | 0.9469 | |
|
| spearman_dot | 0.6608 | |
|
| pearson_max | 0.9836 | |
|
| spearman_max | 0.662 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.9397 | |
|
| **spearman_cosine** | **0.662** | |
|
| pearson_manhattan | 0.9762 | |
|
| spearman_manhattan | 0.662 | |
|
| pearson_euclidean | 0.9782 | |
|
| spearman_euclidean | 0.662 | |
|
| pearson_dot | 0.9271 | |
|
| spearman_dot | 0.6608 | |
|
| pearson_max | 0.9782 | |
|
| spearman_max | 0.662 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.9149 | |
|
| **spearman_cosine** | **0.662** | |
|
| pearson_manhattan | 0.9682 | |
|
| spearman_manhattan | 0.662 | |
|
| pearson_euclidean | 0.9708 | |
|
| spearman_euclidean | 0.662 | |
|
| pearson_dot | 0.894 | |
|
| spearman_dot | 0.6602 | |
|
| pearson_max | 0.9708 | |
|
| spearman_max | 0.662 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 1,625 training samples |
|
* Columns: <code>sentence_A</code>, <code>sentence_B</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_A | sentence_B | score | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.73 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>0: ~83.30%</li><li>1: ~16.70%</li></ul> | |
|
* Samples: |
|
| sentence_A | sentence_B | score | |
|
|:-----------------------------------|:--------------------------------------|:---------------| |
|
| <code>Thermal Fatigue</code> | <code>Ferritic Stainless Steel</code> | <code>0</code> | |
|
| <code>High Temperature Wear</code> | <code>Drill String</code> | <code>0</code> | |
|
| <code>Carbide Coatings</code> | <code>Carbide Coatings</code> | <code>1</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_spearman_cosine | dim_256_spearman_cosine | dim_512_spearman_cosine | dim_64_spearman_cosine | dim_768_spearman_cosine | |
|
|:----------:|:------:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:-----------------------:| |
|
| 0 | 0 | - | 0.6626 | 0.6626 | 0.6626 | 0.6626 | 0.6626 | |
|
| 0.9412 | 3 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 | |
|
| 1.8627 | 6 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 | |
|
| 2.7843 | 9 | - | 0.6620 | 0.6620 | 0.6620 | 0.6620 | 0.6620 | |
|
| 3.0784 | 10 | 0.156 | - | - | - | - | - | |
|
| **3.7059** | **12** | **-** | **0.662** | **0.662** | **0.662** | **0.662** | **0.662** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |