Edit model card

mDeBERTa-v3-base-finetuned-nli-jnli

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7739
  • Accuracy: 0.6808
  • F1: 0.6742

Model description

More information needed

Intended uses & limitations

zero-shot classification

from transformers import pipeline

model_name = "thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli"
classifier = pipeline("zero-shot-classification", model=model_name)

text = ["今日の天気を教えて", "ニュースある?", "予定をチェックして", "ドル円は?"]
labels = ["天気", "ニュース", "金融", "予定"]

for t in text:
    output = classifier(t, labels, multi_label=False)
    print(output)

NLI use-case

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
model_name = "thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

premise = "NY Yankees is the professional baseball team in America."
hypothesis = "メジャーリーグのチームは、日本ではニューヨークヤンキースが有名だ。"

inputs = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")

with torch.no_grad():
    output = model(**inputs)
    
preds = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
result = {name: round(float(pred) * 100, 1) for pred, name in zip(preds, label_names)}
print(result)

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.753 0.53 5000 0.8758 0.6105 0.6192
0.5947 1.07 10000 0.6619 0.7054 0.7035
0.5791 1.6 15000 0.7739 0.6808 0.6742

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
47,852
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli

Finetuned
(206)
this model

Datasets used to train thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli