File size: 20,997 Bytes
3225d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
from typing import Any, Dict, Optional
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers

import numpy
import torch
import torch.nn as nn
import torch.utils.checkpoint
import torch.distributed
import transformers
from collections import OrderedDict
from PIL import Image
from torchvision import transforms
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer

import diffusers
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    EulerAncestralDiscreteScheduler,
    UNet2DConditionModel,
    ImagePipelineOutput
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
from diffusers.utils.import_utils import is_xformers_available


def to_rgb_image(maybe_rgba: Image.Image):
    if maybe_rgba.mode == 'RGB':
        return maybe_rgba
    elif maybe_rgba.mode == 'RGBA':
        rgba = maybe_rgba
        img = numpy.random.randint(127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
        img = Image.fromarray(img, 'RGB')
        img.paste(rgba, mask=rgba.getchannel('A'))
        return img
    else:
        raise ValueError("Unsupported image type.", maybe_rgba.mode)


class ReferenceOnlyAttnProc(torch.nn.Module):
    def __init__(
        self,
        chained_proc,
        enabled=False,
        name=None
    ) -> None:
        super().__init__()
        self.enabled = enabled
        self.chained_proc = chained_proc
        self.name = name

    def __call__(
        self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
        mode="w", ref_dict: dict = None, is_cfg_guidance = False
    ) -> Any:
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        if self.enabled and is_cfg_guidance:
            res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask)
            hidden_states = hidden_states[1:]
            encoder_hidden_states = encoder_hidden_states[1:]
        if self.enabled:
            if mode == 'w':
                ref_dict[self.name] = encoder_hidden_states
            elif mode == 'r':
                encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
            elif mode == 'm':
                encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
            else:
                assert False, mode
        res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
        if self.enabled and is_cfg_guidance:
            res = torch.cat([res0, res])
        return res


class RefOnlyNoisedUNet(torch.nn.Module):
    def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None:
        super().__init__()
        self.unet = unet
        self.train_sched = train_sched
        self.val_sched = val_sched

        unet_lora_attn_procs = dict()
        for name, _ in unet.attn_processors.items():
            if torch.__version__ >= '2.0':
                default_attn_proc = AttnProcessor2_0()
            elif is_xformers_available():
                default_attn_proc = XFormersAttnProcessor()
            else:
                default_attn_proc = AttnProcessor()
            unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
                default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
            )
        unet.set_attn_processor(unet_lora_attn_procs)

    def __getattr__(self, name: str):
        try:
            return super().__getattr__(name)
        except AttributeError:
            return getattr(self.unet, name)

    def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
        if is_cfg_guidance:
            encoder_hidden_states = encoder_hidden_states[1:]
            class_labels = class_labels[1:]
        self.unet(
            noisy_cond_lat, timestep,
            encoder_hidden_states=encoder_hidden_states,
            class_labels=class_labels,
            cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
            **kwargs
        )

    def forward(
        self, sample, timestep, encoder_hidden_states, class_labels=None,
        *args, cross_attention_kwargs,
        down_block_res_samples=None, mid_block_res_sample=None,
        **kwargs
    ):
        cond_lat = cross_attention_kwargs['cond_lat']
        is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
        noise = torch.randn_like(cond_lat)
        if self.training:
            noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
            noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
        else:
            noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
            noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
        ref_dict = {}
        self.forward_cond(
            noisy_cond_lat, timestep,
            encoder_hidden_states, class_labels,
            ref_dict, is_cfg_guidance, **kwargs
        )
        weight_dtype = self.unet.dtype
        return self.unet(
            sample, timestep,
            encoder_hidden_states, *args,
            class_labels=class_labels,
            cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
            down_block_additional_residuals=[
                sample.to(dtype=weight_dtype) for sample in down_block_res_samples
            ] if down_block_res_samples is not None else None,
            mid_block_additional_residual=(
                mid_block_res_sample.to(dtype=weight_dtype)
                if mid_block_res_sample is not None else None
            ),
            **kwargs
        )


def scale_latents(latents):
    latents = (latents - 0.22) * 0.75
    return latents


def unscale_latents(latents):
    latents = latents / 0.75 + 0.22
    return latents


def scale_image(image):
    image = image * 0.5 / 0.8
    return image


def unscale_image(image):
    image = image / 0.5 * 0.8
    return image


class DepthControlUNet(torch.nn.Module):
    def __init__(self, unet: RefOnlyNoisedUNet, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0) -> None:
        super().__init__()
        self.unet = unet
        if controlnet is None:
            self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
        else:
            self.controlnet = controlnet
        DefaultAttnProc = AttnProcessor2_0
        if is_xformers_available():
            DefaultAttnProc = XFormersAttnProcessor
        self.controlnet.set_attn_processor(DefaultAttnProc())
        self.conditioning_scale = conditioning_scale

    def __getattr__(self, name: str):
        try:
            return super().__getattr__(name)
        except AttributeError:
            return getattr(self.unet, name)

    def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs):
        cross_attention_kwargs = dict(cross_attention_kwargs)
        control_depth = cross_attention_kwargs.pop('control_depth')
        down_block_res_samples, mid_block_res_sample = self.controlnet(
            sample,
            timestep,
            encoder_hidden_states=encoder_hidden_states,
            controlnet_cond=control_depth,
            conditioning_scale=self.conditioning_scale,
            return_dict=False,
        )
        return self.unet(
            sample,
            timestep,
            encoder_hidden_states=encoder_hidden_states,
            down_block_res_samples=down_block_res_samples,
            mid_block_res_sample=mid_block_res_sample,
            cross_attention_kwargs=cross_attention_kwargs
        )


class ModuleListDict(torch.nn.Module):
    def __init__(self, procs: dict) -> None:
        super().__init__()
        self.keys = sorted(procs.keys())
        self.values = torch.nn.ModuleList(procs[k] for k in self.keys)

    def __getitem__(self, key):
        return self.values[self.keys.index(key)]


class SuperNet(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
        self.layers = torch.nn.ModuleList(state_dict.values())
        self.mapping = dict(enumerate(state_dict.keys()))
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]

        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k
            return key.split('.')[0]

        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
                replace_key = remap_key(key, state_dict)
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
    tokenizer: transformers.CLIPTokenizer
    text_encoder: transformers.CLIPTextModel
    vision_encoder: transformers.CLIPVisionModelWithProjection

    feature_extractor_clip: transformers.CLIPImageProcessor
    unet: UNet2DConditionModel
    scheduler: diffusers.schedulers.KarrasDiffusionSchedulers

    vae: AutoencoderKL
    ramping: nn.Linear

    feature_extractor_vae: transformers.CLIPImageProcessor

    depth_transforms_multi = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])
    ])

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        vision_encoder: transformers.CLIPVisionModelWithProjection,
        feature_extractor_clip: CLIPImageProcessor, 
        feature_extractor_vae: CLIPImageProcessor,
        ramping_coefficients: Optional[list] = None,
        safety_checker=None,
    ):
        DiffusionPipeline.__init__(self)

        self.register_modules(
            vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
            unet=unet, scheduler=scheduler, safety_checker=None,
            vision_encoder=vision_encoder,
            feature_extractor_clip=feature_extractor_clip,
            feature_extractor_vae=feature_extractor_vae
        )
        self.register_to_config(ramping_coefficients=ramping_coefficients)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

    def prepare(self):
        train_sched = DDPMScheduler.from_config(self.scheduler.config)
        self.scheduler = train_sched
        if isinstance(self.unet, UNet2DConditionModel):
            self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()

    def add_controlnet(self, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0):
        self.prepare()
        self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale)
        return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))

    def encode_condition_image(self, image: torch.Tensor):
        image = self.vae.encode(image).latent_dist.sample()
        return image

    def prepare_conditions(self, image: Image.Image, depth_image: Image.Image = None, guidance_scale=4.0, prompt="", num_images_per_prompt=1):
        # image = to_rgb_image(image)
        image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
        image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
        if depth_image is not None and hasattr(self.unet, "controlnet"):
            depth_image = to_rgb_image(depth_image)
            depth_image = self.depth_transforms_multi(depth_image).to(
                device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
            )
        image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
        image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)

        cond_lat = self.encode_condition_image(image)
        if guidance_scale > 1:
            negative_lat = self.encode_condition_image(torch.zeros_like(image))
            cond_lat = torch.cat([negative_lat, cond_lat])
        encoded = self.vision_encoder(image_2, output_hidden_states=False)
        global_embeds = encoded.image_embeds
        global_embeds = global_embeds.unsqueeze(-2)
        
        if hasattr(self, "encode_prompt"):
            encoder_hidden_states = self.encode_prompt(
                prompt,
                self.device,
                num_images_per_prompt,
                False
            )[0]
        else:
            encoder_hidden_states = self._encode_prompt(
                prompt,
                self.device,
                num_images_per_prompt,
                False
            )
        ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
        encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
        cak = dict(cond_lat=cond_lat)
        if hasattr(self.unet, "controlnet"):
            cak['control_depth'] = depth_image
        device = self._execution_device
        do_classifier_free_guidance = guidance_scale > 1.0
        prompt_embeds = self._encode_prompt(
            None,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt=None,
            prompt_embeds=encoder_hidden_states,
            negative_prompt_embeds=None,
            lora_scale=None,
        )
        return prompt_embeds, cak

    @torch.no_grad()
    def __call__(
        self,
        image: Image.Image = None,
        prompt = "",
        *args,
        num_images_per_prompt: Optional[int] = 1,
        guidance_scale=4.0,
        depth_image: Image.Image = None,
        output_type: Optional[str] = "pil",
        width=640,
        height=960,
        num_inference_steps=28,
        return_dict=True,
        **kwargs
    ):
        self.prepare()
        if image is None:
            raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
        assert not isinstance(image, torch.Tensor)
        # image = to_rgb_image(image)
        # image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
        # image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
        # if depth_image is not None and hasattr(self.unet, "controlnet"):
        #     depth_image = to_rgb_image(depth_image)
        #     depth_image = self.depth_transforms_multi(depth_image).to(
        #         device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
        #     )
        # image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
        # image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
        # cond_lat = self.encode_condition_image(image)
        # if guidance_scale > 1:
        #     negative_lat = self.encode_condition_image(torch.zeros_like(image))
        #     cond_lat = torch.cat([negative_lat, cond_lat])
        # encoded = self.vision_encoder(image_2, output_hidden_states=False)
        # global_embeds = encoded.image_embeds
        # global_embeds = global_embeds.unsqueeze(-2)
        
        # if hasattr(self, "encode_prompt"):
        #     encoder_hidden_states = self.encode_prompt(
        #         prompt,
        #         self.device,
        #         num_images_per_prompt,
        #         False
        #     )[0]
        # else:
        #     encoder_hidden_states = self._encode_prompt(
        #         prompt,
        #         self.device,
        #         num_images_per_prompt,
        #         False
        #     )
        # ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
        # encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
        # cak = dict(cond_lat=cond_lat)
        # if hasattr(self.unet, "controlnet"):
        #     cak['control_depth'] = depth_image
        # device = self._execution_device
        # do_classifier_free_guidance = guidance_scale > 1.0
        # prompt_embeds = self._encode_prompt(
        #     None,
        #     device,
        #     num_images_per_prompt,
        #     do_classifier_free_guidance,
        #     negative_prompt=None,
        #     prompt_embeds=encoder_hidden_states,
        #     negative_prompt_embeds=None,
        #     lora_scale=None,
        # )

        prompt_embeds, cak = self.prepare_conditions(image, depth_image, guidance_scale, prompt)
        
        device = self._execution_device
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        generator = None
        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = torch.randn([4, num_channels_latents, height//self.vae_scale_factor, width//self.vae_scale_factor], device=device, dtype=prompt_embeds.dtype)
        # latents = torch.load("latents.pt").to(device, dtype=prompt_embeds.dtype)[:4]
        do_classifier_free_guidance = guidance_scale > 1.0
        # # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        # extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta=0.0)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cak,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # if do_classifier_free_guidance and guidance_rescale > 0.0:
                #     # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                #     noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    # if callback is not None and i % callback_steps == 0:
                    #     callback(i, t, latents)
        
        latents = unscale_latents(latents)
        if not output_type == "latent":
            image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
        else:
            image = latents

        image = self.image_processor.postprocess(image, output_type=output_type)
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)