thundaa's picture
update model card README.md
aed446b
|
raw
history blame
2.33 kB
metadata
license: apache-2.0
tags:
  - protein language model
  - generated_from_trainer
datasets:
  - train
metrics:
  - spearmanr
model-index:
  - name: tape-fluorescence-prediction-RITA_s
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: cradle-bio/tape-fluorescence
          type: train
        metrics:
          - name: Spearmanr
            type: spearmanr
            value: 0.32362885705173594

tape-fluorescence-prediction-RITA_s

This model is a fine-tuned version of lightonai/RITA_s on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7029
  • Spearmanr: 0.3236

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 17
  • gradient_accumulation_steps: 128
  • total_train_batch_size: 4096
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Spearmanr
7.0854 0.85 4 0.8055 0.0686
0.8791 1.85 8 0.7455 0.1288
0.822 2.85 12 0.7385 0.2069
0.8155 3.85 16 0.7346 0.2680
0.8139 4.85 20 0.7345 0.3102
0.81 5.85 24 0.7375 0.3349
0.805 6.85 28 0.7211 0.3298
0.799 7.85 32 0.7114 0.3282
0.784 8.85 36 0.7132 0.3220
0.6627 9.85 40 0.7029 0.3236

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1