metadata
license: cc-by-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: nb-bert-base-user-needs
results: []
nb-bert-base-user-needs
This model is a fine-tuned version of NbAiLab/nb-bert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0600
- Accuracy: 0.8479
- F1: 0.8319
- Precision: 0.8315
- Recall: 0.8479
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 98 | 1.1222 | 0.6263 | 0.5185 | 0.5076 | 0.6263 |
No log | 2.0 | 196 | 1.0066 | 0.7216 | 0.6436 | 0.5899 | 0.7216 |
No log | 3.0 | 294 | 0.8540 | 0.7577 | 0.7037 | 0.6760 | 0.7577 |
No log | 4.0 | 392 | 0.8621 | 0.7603 | 0.6998 | 0.6568 | 0.7603 |
No log | 5.0 | 490 | 0.8062 | 0.7887 | 0.7500 | 0.7449 | 0.7887 |
0.91 | 6.0 | 588 | 0.7465 | 0.8041 | 0.7660 | 0.7636 | 0.8041 |
0.91 | 7.0 | 686 | 0.6324 | 0.8247 | 0.8163 | 0.8187 | 0.8247 |
0.91 | 8.0 | 784 | 0.7333 | 0.7964 | 0.7703 | 0.7740 | 0.7964 |
0.91 | 9.0 | 882 | 0.6590 | 0.8325 | 0.8208 | 0.8106 | 0.8325 |
0.91 | 10.0 | 980 | 0.9854 | 0.8196 | 0.7890 | 0.7920 | 0.8196 |
0.4246 | 11.0 | 1078 | 0.7023 | 0.8247 | 0.8054 | 0.8138 | 0.8247 |
0.4246 | 12.0 | 1176 | 0.8995 | 0.8325 | 0.8120 | 0.8068 | 0.8325 |
0.4246 | 13.0 | 1274 | 0.8589 | 0.8299 | 0.8145 | 0.8058 | 0.8299 |
0.4246 | 14.0 | 1372 | 0.9859 | 0.8376 | 0.8151 | 0.8123 | 0.8376 |
0.4246 | 15.0 | 1470 | 0.8452 | 0.8402 | 0.8318 | 0.8341 | 0.8402 |
0.1637 | 16.0 | 1568 | 1.1156 | 0.8351 | 0.8157 | 0.8196 | 0.8351 |
0.1637 | 17.0 | 1666 | 1.1514 | 0.8325 | 0.8122 | 0.8218 | 0.8325 |
0.1637 | 18.0 | 1764 | 1.0092 | 0.8428 | 0.8266 | 0.8320 | 0.8428 |
0.1637 | 19.0 | 1862 | 1.0368 | 0.8351 | 0.8229 | 0.8287 | 0.8351 |
0.1637 | 20.0 | 1960 | 1.0600 | 0.8479 | 0.8319 | 0.8315 | 0.8479 |
0.0391 | 21.0 | 2058 | 1.1046 | 0.8428 | 0.8293 | 0.8269 | 0.8428 |
0.0391 | 22.0 | 2156 | 1.1178 | 0.8454 | 0.8262 | 0.8280 | 0.8454 |
0.0391 | 23.0 | 2254 | 1.1103 | 0.8428 | 0.8268 | 0.8295 | 0.8428 |
0.0391 | 24.0 | 2352 | 1.1179 | 0.8428 | 0.8274 | 0.8313 | 0.8428 |
0.0391 | 25.0 | 2450 | 1.1134 | 0.8402 | 0.8233 | 0.8254 | 0.8402 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.2+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1