newsdata-bert / README.md
tiagoblima's picture
End of training
48a29ce verified
|
raw
history blame
2.32 kB
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - f1
  - recall
model-index:
  - name: newsdata-bert
    results: []

newsdata-bert

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4835
  • Accuracy: 0.8617
  • Precision: 0.8494
  • F1: 0.8533
  • Recall: 0.8617

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision F1 Recall
1.2095 0.1024 1000 1.0182 0.7335 0.6811 0.6915 0.7335
0.8995 0.2048 2000 0.8102 0.7798 0.7622 0.7586 0.7798
0.7554 0.3071 3000 0.6720 0.8165 0.7938 0.8023 0.8165
0.6805 0.4095 4000 0.6185 0.828 0.8107 0.8157 0.828
0.6192 0.5119 5000 0.5865 0.8322 0.8233 0.8226 0.8322
0.5963 0.6143 6000 0.5462 0.8475 0.8333 0.8356 0.8475
0.5466 0.7166 7000 0.5384 0.849 0.8386 0.8398 0.849
0.5447 0.8190 8000 0.4923 0.8582 0.8440 0.8491 0.8582
0.5288 0.9214 9000 0.4835 0.8617 0.8494 0.8533 0.8617

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1