newsdata-bertimbal / README.md
tiagoblima's picture
End of training
196255c verified
|
raw
history blame
2.06 kB
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: newsdata-bertimbal
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# newsdata-bertimbal
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7455
- Accuracy: 0.8743
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 0.8448 | 0.0859 | 5000 | 1.1296 | 0.8044 |
| 0.7301 | 0.1718 | 10000 | 1.0056 | 0.8258 |
| 0.6827 | 0.2577 | 15000 | 0.9388 | 0.8464 |
| 0.6221 | 0.3436 | 20000 | 0.9358 | 0.8502 |
| 0.5611 | 0.4295 | 25000 | 0.8983 | 0.8567 |
| 0.5291 | 0.5155 | 30000 | 0.8503 | 0.8575 |
| 0.4202 | 0.6014 | 35000 | 0.8353 | 0.8656 |
| 0.5436 | 0.6873 | 40000 | 0.7476 | 0.8706 |
| 0.4814 | 0.7732 | 45000 | 0.7863 | 0.8669 |
| 0.4853 | 0.8591 | 50000 | 0.7284 | 0.8720 |
| 0.39 | 0.9450 | 55000 | 0.7455 | 0.8743 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1