Fastest timm models > 75.3% IN-1k Top-1 (Original ResNet-50)
Collection
Fastest image classification models with 75.3% accuracy in ImageNet-1k .
•
21 items
•
Updated
•
4
A LeViT image classification model using convolutional mode (using nn.Conv2d and nn.BatchNorm2d). Pretrained on ImageNet-1k using distillation by paper authors.
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model('levit_128.fb_dist_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'levit_128.fb_dist_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
model | top1 | top5 | param_count | img_size |
---|---|---|---|---|
levit_384.fb_dist_in1k | 82.596 | 96.012 | 39.13 | 224 |
levit_conv_384.fb_dist_in1k | 82.596 | 96.012 | 39.13 | 224 |
levit_256.fb_dist_in1k | 81.512 | 95.48 | 18.89 | 224 |
levit_conv_256.fb_dist_in1k | 81.512 | 95.48 | 18.89 | 224 |
levit_conv_192.fb_dist_in1k | 79.86 | 94.792 | 10.95 | 224 |
levit_192.fb_dist_in1k | 79.858 | 94.792 | 10.95 | 224 |
levit_128.fb_dist_in1k | 78.474 | 94.014 | 9.21 | 224 |
levit_conv_128.fb_dist_in1k | 78.474 | 94.02 | 9.21 | 224 |
levit_128s.fb_dist_in1k | 76.534 | 92.864 | 7.78 | 224 |
levit_conv_128s.fb_dist_in1k | 76.532 | 92.864 | 7.78 | 224 |
@InProceedings{Graham_2021_ICCV,
author = {Graham, Benjamin and El-Nouby, Alaaeldin and Touvron, Hugo and Stock, Pierre and Joulin, Armand and Jegou, Herve and Douze, Matthijs},
title = {LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {12259-12269}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}