|
--- |
|
license: apache-2.0 |
|
library_name: timm |
|
tags: |
|
- image-classification |
|
- timm |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# Model card for levit_192.fb_dist_in1k |
|
|
|
A LeViT image classification model using convolutional mode (using nn.Conv2d and nn.BatchNorm2d). Pretrained on ImageNet-1k using distillation by paper authors. |
|
|
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 10.9 |
|
- GMACs: 0.7 |
|
- Activations (M): 3.2 |
|
- Image size: 224 x 224 |
|
- **Papers:** |
|
- LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference: https://arxiv.org/abs/2104.01136 |
|
- **Original:** https://github.com/facebookresearch/LeViT |
|
- **Dataset:** ImageNet-1k |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open( |
|
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) |
|
|
|
model = timm.create_model('levit_192.fb_dist_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open( |
|
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) |
|
|
|
model = timm.create_model( |
|
'levit_192.fb_dist_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is (batch_size, num_features) tensor |
|
``` |
|
|
|
## Model Comparison |
|
|model |top1 |top5 |param_count|img_size| |
|
|-----------------------------------|------|------|-----------|--------| |
|
|levit_384.fb_dist_in1k |82.596|96.012|39.13 |224 | |
|
|levit_conv_384.fb_dist_in1k |82.596|96.012|39.13 |224 | |
|
|levit_256.fb_dist_in1k |81.512|95.48 |18.89 |224 | |
|
|levit_conv_256.fb_dist_in1k |81.512|95.48 |18.89 |224 | |
|
|levit_conv_192.fb_dist_in1k |79.86 |94.792|10.95 |224 | |
|
|levit_192.fb_dist_in1k |79.858|94.792|10.95 |224 | |
|
|levit_128.fb_dist_in1k |78.474|94.014|9.21 |224 | |
|
|levit_conv_128.fb_dist_in1k |78.474|94.02 |9.21 |224 | |
|
|levit_128s.fb_dist_in1k |76.534|92.864|7.78 |224 | |
|
|levit_conv_128s.fb_dist_in1k |76.532|92.864|7.78 |224 | |
|
|
|
## Citation |
|
```bibtex |
|
@InProceedings{Graham_2021_ICCV, |
|
author = {Graham, Benjamin and El-Nouby, Alaaeldin and Touvron, Hugo and Stock, Pierre and Joulin, Armand and Jegou, Herve and Douze, Matthijs}, |
|
title = {LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference}, |
|
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, |
|
month = {October}, |
|
year = {2021}, |
|
pages = {12259-12269} |
|
} |
|
``` |
|
```bibtex |
|
@misc{rw2019timm, |
|
author = {Ross Wightman}, |
|
title = {PyTorch Image Models}, |
|
year = {2019}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
doi = {10.5281/zenodo.4414861}, |
|
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} |
|
} |
|
``` |
|
|