tmsreekanth98's picture
update model card README.md
6ddc437
|
raw
history blame
2.25 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - kp20k
metrics:
  - rouge
model-index:
  - name: ED_keyphrase/
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: kp20k
          type: kp20k
          config: generation
          split: train[:15%]
          args: generation
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.0784

ED_keyphrase/

This model is a fine-tuned version of on the kp20k dataset. It achieves the following results on the evaluation set:

  • Loss: 4.4436
  • Rouge1: 0.0784
  • Rouge2: 0.0159
  • Rougel: 0.0732
  • Rougelsum: 0.0732
  • Gen Len: 70.8515

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
6.1614 1.0 664 5.2825 0.0866 0.0047 0.0767 0.0767 53.6569
5.2585 2.0 1328 4.7707 0.0551 0.0087 0.0517 0.0518 83.1487
4.8764 3.0 1992 4.5703 0.0634 0.0117 0.0594 0.0595 81.5616
4.5709 4.0 2656 4.4749 0.0743 0.0145 0.0695 0.0695 72.9576
4.4978 5.0 3320 4.4436 0.0784 0.0159 0.0732 0.0732 70.8515

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2