metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results: []
distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1977
- Accuracy: 0.9461
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9871 | 1.0 | 318 | 1.4311 | 0.7381 |
1.1128 | 2.0 | 636 | 0.7515 | 0.8687 |
0.6047 | 3.0 | 954 | 0.4328 | 0.9213 |
0.3629 | 4.0 | 1272 | 0.2998 | 0.9358 |
0.2498 | 5.0 | 1590 | 0.2453 | 0.94 |
0.1978 | 6.0 | 1908 | 0.2204 | 0.9448 |
0.1725 | 7.0 | 2226 | 0.2104 | 0.9452 |
0.1581 | 8.0 | 2544 | 0.2016 | 0.9461 |
0.1501 | 9.0 | 2862 | 0.1989 | 0.9458 |
0.1456 | 10.0 | 3180 | 0.1977 | 0.9461 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0