|
|
|
import unittest |
|
|
|
from detectron2.layers import ShapeSpec |
|
from detectron2.modeling.mmdet_wrapper import MMDetBackbone, MMDetDetector |
|
|
|
try: |
|
import mmdet.models |
|
|
|
HAS_MMDET = True |
|
except ImportError: |
|
HAS_MMDET = False |
|
|
|
|
|
@unittest.skipIf(not HAS_MMDET, "mmdet not available") |
|
class TestMMDetWrapper(unittest.TestCase): |
|
def test_backbone(self): |
|
MMDetBackbone( |
|
backbone=dict( |
|
type="DetectoRS_ResNet", |
|
conv_cfg=dict(type="ConvAWS"), |
|
sac=dict(type="SAC", use_deform=True), |
|
stage_with_sac=(False, True, True, True), |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type="BN", requires_grad=True), |
|
norm_eval=True, |
|
style="pytorch", |
|
), |
|
neck=dict( |
|
type="FPN", |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
num_outs=5, |
|
), |
|
|
|
|
|
output_shapes=[ShapeSpec(channels=256, stride=s) for s in [4, 8, 16, 32, 64]], |
|
output_names=["p2", "p3", "p4", "p5", "p6"], |
|
) |
|
|
|
def test_detector(self): |
|
|
|
MMDetDetector( |
|
detector=dict( |
|
type="MaskRCNN", |
|
backbone=dict( |
|
type="ResNet", |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type="BN", requires_grad=True), |
|
norm_eval=True, |
|
style="pytorch", |
|
|
|
|
|
), |
|
neck=dict( |
|
type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5 |
|
), |
|
rpn_head=dict( |
|
type="RPNHead", |
|
in_channels=256, |
|
feat_channels=256, |
|
anchor_generator=dict( |
|
type="AnchorGenerator", |
|
scales=[8], |
|
ratios=[0.5, 1.0, 2.0], |
|
strides=[4, 8, 16, 32, 64], |
|
), |
|
bbox_coder=dict( |
|
type="DeltaXYWHBBoxCoder", |
|
target_means=[0.0, 0.0, 0.0, 0.0], |
|
target_stds=[1.0, 1.0, 1.0, 1.0], |
|
), |
|
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0), |
|
loss_bbox=dict(type="L1Loss", loss_weight=1.0), |
|
), |
|
roi_head=dict( |
|
type="StandardRoIHead", |
|
bbox_roi_extractor=dict( |
|
type="SingleRoIExtractor", |
|
roi_layer=dict(type="RoIAlign", output_size=7, sampling_ratio=0), |
|
out_channels=256, |
|
featmap_strides=[4, 8, 16, 32], |
|
), |
|
bbox_head=dict( |
|
type="Shared2FCBBoxHead", |
|
in_channels=256, |
|
fc_out_channels=1024, |
|
roi_feat_size=7, |
|
num_classes=80, |
|
bbox_coder=dict( |
|
type="DeltaXYWHBBoxCoder", |
|
target_means=[0.0, 0.0, 0.0, 0.0], |
|
target_stds=[0.1, 0.1, 0.2, 0.2], |
|
), |
|
reg_class_agnostic=False, |
|
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), |
|
loss_bbox=dict(type="L1Loss", loss_weight=1.0), |
|
), |
|
mask_roi_extractor=dict( |
|
type="SingleRoIExtractor", |
|
roi_layer=dict(type="RoIAlign", output_size=14, sampling_ratio=0), |
|
out_channels=256, |
|
featmap_strides=[4, 8, 16, 32], |
|
), |
|
mask_head=dict( |
|
type="FCNMaskHead", |
|
num_convs=4, |
|
in_channels=256, |
|
conv_out_channels=256, |
|
num_classes=80, |
|
loss_mask=dict(type="CrossEntropyLoss", use_mask=True, loss_weight=1.0), |
|
), |
|
), |
|
|
|
train_cfg=dict( |
|
rpn=dict( |
|
assigner=dict( |
|
type="MaxIoUAssigner", |
|
pos_iou_thr=0.7, |
|
neg_iou_thr=0.3, |
|
min_pos_iou=0.3, |
|
match_low_quality=True, |
|
ignore_iof_thr=-1, |
|
), |
|
sampler=dict( |
|
type="RandomSampler", |
|
num=256, |
|
pos_fraction=0.5, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=False, |
|
), |
|
allowed_border=-1, |
|
pos_weight=-1, |
|
debug=False, |
|
), |
|
rpn_proposal=dict( |
|
nms_pre=2000, |
|
max_per_img=1000, |
|
nms=dict(type="nms", iou_threshold=0.7), |
|
min_bbox_size=0, |
|
), |
|
rcnn=dict( |
|
assigner=dict( |
|
type="MaxIoUAssigner", |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
min_pos_iou=0.5, |
|
match_low_quality=True, |
|
ignore_iof_thr=-1, |
|
), |
|
sampler=dict( |
|
type="RandomSampler", |
|
num=512, |
|
pos_fraction=0.25, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True, |
|
), |
|
mask_size=28, |
|
pos_weight=-1, |
|
debug=False, |
|
), |
|
), |
|
test_cfg=dict( |
|
rpn=dict( |
|
nms_pre=1000, |
|
max_per_img=1000, |
|
nms=dict(type="nms", iou_threshold=0.7), |
|
min_bbox_size=0, |
|
), |
|
rcnn=dict( |
|
score_thr=0.05, |
|
nms=dict(type="nms", iou_threshold=0.5), |
|
max_per_img=100, |
|
mask_thr_binary=0.5, |
|
), |
|
), |
|
), |
|
pixel_mean=[1, 2, 3], |
|
pixel_std=[1, 2, 3], |
|
) |
|
|