This directory contains a few example scripts that demonstrate features of detectron2.
train_net.py
An example training script that's made to train builtin models of detectron2.
For usage, see GETTING_STARTED.md.
plain_train_net.py
Similar to train_net.py
, but implements a training loop instead of using Trainer
.
This script includes fewer features but it may be more friendly to hackers.
benchmark.py
Benchmark the training speed, inference speed or data loading speed of a given config.
Usage:
python benchmark.py --config-file config.yaml --task train/eval/data [optional DDP flags]
analyze_model.py
Analyze FLOPs, parameters, activations of a detectron2 model. See its --help
for usage.
visualize_json_results.py
Visualize the json instance detection/segmentation results dumped by COCOEvalutor
or LVISEvaluator
Usage:
python visualize_json_results.py --input x.json --output dir/ --dataset coco_2017_val
If not using a builtin dataset, you'll need your own script or modify this script.
visualize_data.py
Visualize ground truth raw annotations or training data (after preprocessing/augmentations).
Usage:
python visualize_data.py --config-file config.yaml --source annotation/dataloader --output-dir dir/ [--show]
NOTE: the script does not stop by itself when using --source dataloader
because a training
dataloader is usually infinite.