Inference Endpoints
GRiT / detectron2 /tools /deploy /export_model.py
Vishakaraj's picture
Upload 1797 files
a567fa4
raw
history blame
9.24 kB
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
import argparse
import os
from typing import Dict, List, Tuple
import torch
from torch import Tensor, nn
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import build_detection_test_loader, detection_utils
from detectron2.evaluation import COCOEvaluator, inference_on_dataset, print_csv_format
from detectron2.export import TracingAdapter, dump_torchscript_IR, scripting_with_instances
from detectron2.modeling import GeneralizedRCNN, RetinaNet, build_model
from detectron2.modeling.postprocessing import detector_postprocess
from detectron2.projects.point_rend import add_pointrend_config
from detectron2.structures import Boxes
from detectron2.utils.env import TORCH_VERSION
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import setup_logger
def setup_cfg(args):
cfg = get_cfg()
# cuda context is initialized before creating dataloader, so we don't fork anymore
cfg.DATALOADER.NUM_WORKERS = 0
add_pointrend_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg
def export_caffe2_tracing(cfg, torch_model, inputs):
from detectron2.export import Caffe2Tracer
tracer = Caffe2Tracer(cfg, torch_model, inputs)
if args.format == "caffe2":
caffe2_model = tracer.export_caffe2()
caffe2_model.save_protobuf(args.output)
# draw the caffe2 graph
caffe2_model.save_graph(os.path.join(args.output, "model.svg"), inputs=inputs)
return caffe2_model
elif args.format == "onnx":
import onnx
onnx_model = tracer.export_onnx()
onnx.save(onnx_model, os.path.join(args.output, "model.onnx"))
elif args.format == "torchscript":
ts_model = tracer.export_torchscript()
with PathManager.open(os.path.join(args.output, "model.ts"), "wb") as f:
torch.jit.save(ts_model, f)
dump_torchscript_IR(ts_model, args.output)
# experimental. API not yet final
def export_scripting(torch_model):
assert TORCH_VERSION >= (1, 8)
fields = {
"proposal_boxes": Boxes,
"objectness_logits": Tensor,
"pred_boxes": Boxes,
"scores": Tensor,
"pred_classes": Tensor,
"pred_masks": Tensor,
"pred_keypoints": torch.Tensor,
"pred_keypoint_heatmaps": torch.Tensor,
}
assert args.format == "torchscript", "Scripting only supports torchscript format."
class ScriptableAdapterBase(nn.Module):
# Use this adapter to workaround https://github.com/pytorch/pytorch/issues/46944
# by not retuning instances but dicts. Otherwise the exported model is not deployable
def __init__(self):
super().__init__()
self.model = torch_model
self.eval()
if isinstance(torch_model, GeneralizedRCNN):
class ScriptableAdapter(ScriptableAdapterBase):
def forward(self, inputs: Tuple[Dict[str, torch.Tensor]]) -> List[Dict[str, Tensor]]:
instances = self.model.inference(inputs, do_postprocess=False)
return [i.get_fields() for i in instances]
else:
class ScriptableAdapter(ScriptableAdapterBase):
def forward(self, inputs: Tuple[Dict[str, torch.Tensor]]) -> List[Dict[str, Tensor]]:
instances = self.model(inputs)
return [i.get_fields() for i in instances]
ts_model = scripting_with_instances(ScriptableAdapter(), fields)
with PathManager.open(os.path.join(args.output, "model.ts"), "wb") as f:
torch.jit.save(ts_model, f)
dump_torchscript_IR(ts_model, args.output)
# TODO inference in Python now missing postprocessing glue code
return None
# experimental. API not yet final
def export_tracing(torch_model, inputs):
assert TORCH_VERSION >= (1, 8)
image = inputs[0]["image"]
inputs = [{"image": image}] # remove other unused keys
if isinstance(torch_model, GeneralizedRCNN):
def inference(model, inputs):
# use do_postprocess=False so it returns ROI mask
inst = model.inference(inputs, do_postprocess=False)[0]
return [{"instances": inst}]
else:
inference = None # assume that we just call the model directly
traceable_model = TracingAdapter(torch_model, inputs, inference)
if args.format == "torchscript":
ts_model = torch.jit.trace(traceable_model, (image,))
with PathManager.open(os.path.join(args.output, "model.ts"), "wb") as f:
torch.jit.save(ts_model, f)
dump_torchscript_IR(ts_model, args.output)
elif args.format == "onnx":
with PathManager.open(os.path.join(args.output, "model.onnx"), "wb") as f:
torch.onnx.export(traceable_model, (image,), f, opset_version=11)
logger.info("Inputs schema: " + str(traceable_model.inputs_schema))
logger.info("Outputs schema: " + str(traceable_model.outputs_schema))
if args.format != "torchscript":
return None
if not isinstance(torch_model, (GeneralizedRCNN, RetinaNet)):
return None
def eval_wrapper(inputs):
"""
The exported model does not contain the final resize step, which is typically
unused in deployment but needed for evaluation. We add it manually here.
"""
input = inputs[0]
instances = traceable_model.outputs_schema(ts_model(input["image"]))[0]["instances"]
postprocessed = detector_postprocess(instances, input["height"], input["width"])
return [{"instances": postprocessed}]
return eval_wrapper
def get_sample_inputs(args):
if args.sample_image is None:
# get a first batch from dataset
data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
first_batch = next(iter(data_loader))
return first_batch
else:
# get a sample data
original_image = detection_utils.read_image(args.sample_image, format=cfg.INPUT.FORMAT)
# Do same preprocessing as DefaultPredictor
aug = T.ResizeShortestEdge(
[cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
)
height, width = original_image.shape[:2]
image = aug.get_transform(original_image).apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
# Sample ready
sample_inputs = [inputs]
return sample_inputs
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Export a model for deployment.")
parser.add_argument(
"--format",
choices=["caffe2", "onnx", "torchscript"],
help="output format",
default="torchscript",
)
parser.add_argument(
"--export-method",
choices=["caffe2_tracing", "tracing", "scripting"],
help="Method to export models",
default="tracing",
)
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument("--sample-image", default=None, type=str, help="sample image for input")
parser.add_argument("--run-eval", action="store_true")
parser.add_argument("--output", help="output directory for the converted model")
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
logger = setup_logger()
logger.info("Command line arguments: " + str(args))
PathManager.mkdirs(args.output)
# Disable respecialization on new shapes. Otherwise --run-eval will be slow
torch._C._jit_set_bailout_depth(1)
cfg = setup_cfg(args)
# create a torch model
torch_model = build_model(cfg)
DetectionCheckpointer(torch_model).resume_or_load(cfg.MODEL.WEIGHTS)
torch_model.eval()
# get sample data
sample_inputs = get_sample_inputs(args)
# convert and save model
if args.export_method == "caffe2_tracing":
exported_model = export_caffe2_tracing(cfg, torch_model, sample_inputs)
elif args.export_method == "scripting":
exported_model = export_scripting(torch_model)
elif args.export_method == "tracing":
exported_model = export_tracing(torch_model, sample_inputs)
# run evaluation with the converted model
if args.run_eval:
assert exported_model is not None, (
"Python inference is not yet implemented for "
f"export_method={args.export_method}, format={args.format}."
)
logger.info("Running evaluation ... this takes a long time if you export to CPU.")
dataset = cfg.DATASETS.TEST[0]
data_loader = build_detection_test_loader(cfg, dataset)
# NOTE: hard-coded evaluator. change to the evaluator for your dataset
evaluator = COCOEvaluator(dataset, output_dir=args.output)
metrics = inference_on_dataset(exported_model, data_loader, evaluator)
print_csv_format(metrics)