|
|
|
|
|
""" |
|
Detectron2 training script with a plain training loop. |
|
|
|
This script reads a given config file and runs the training or evaluation. |
|
It is an entry point that is able to train standard models in detectron2. |
|
|
|
In order to let one script support training of many models, |
|
this script contains logic that are specific to these built-in models and therefore |
|
may not be suitable for your own project. |
|
For example, your research project perhaps only needs a single "evaluator". |
|
|
|
Therefore, we recommend you to use detectron2 as a library and take |
|
this file as an example of how to use the library. |
|
You may want to write your own script with your datasets and other customizations. |
|
|
|
Compared to "train_net.py", this script supports fewer default features. |
|
It also includes fewer abstraction, therefore is easier to add custom logic. |
|
""" |
|
|
|
import logging |
|
import os |
|
from collections import OrderedDict |
|
import torch |
|
from torch.nn.parallel import DistributedDataParallel |
|
|
|
import detectron2.utils.comm as comm |
|
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer |
|
from detectron2.config import get_cfg |
|
from detectron2.data import ( |
|
MetadataCatalog, |
|
build_detection_test_loader, |
|
build_detection_train_loader, |
|
) |
|
from detectron2.engine import default_argument_parser, default_setup, default_writers, launch |
|
from detectron2.evaluation import ( |
|
CityscapesInstanceEvaluator, |
|
CityscapesSemSegEvaluator, |
|
COCOEvaluator, |
|
COCOPanopticEvaluator, |
|
DatasetEvaluators, |
|
LVISEvaluator, |
|
PascalVOCDetectionEvaluator, |
|
SemSegEvaluator, |
|
inference_on_dataset, |
|
print_csv_format, |
|
) |
|
from detectron2.modeling import build_model |
|
from detectron2.solver import build_lr_scheduler, build_optimizer |
|
from detectron2.utils.events import EventStorage |
|
|
|
logger = logging.getLogger("detectron2") |
|
|
|
|
|
def get_evaluator(cfg, dataset_name, output_folder=None): |
|
""" |
|
Create evaluator(s) for a given dataset. |
|
This uses the special metadata "evaluator_type" associated with each builtin dataset. |
|
For your own dataset, you can simply create an evaluator manually in your |
|
script and do not have to worry about the hacky if-else logic here. |
|
""" |
|
if output_folder is None: |
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") |
|
evaluator_list = [] |
|
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type |
|
if evaluator_type in ["sem_seg", "coco_panoptic_seg"]: |
|
evaluator_list.append( |
|
SemSegEvaluator( |
|
dataset_name, |
|
distributed=True, |
|
output_dir=output_folder, |
|
) |
|
) |
|
if evaluator_type in ["coco", "coco_panoptic_seg"]: |
|
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) |
|
if evaluator_type == "coco_panoptic_seg": |
|
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) |
|
if evaluator_type == "cityscapes_instance": |
|
return CityscapesInstanceEvaluator(dataset_name) |
|
if evaluator_type == "cityscapes_sem_seg": |
|
return CityscapesSemSegEvaluator(dataset_name) |
|
if evaluator_type == "pascal_voc": |
|
return PascalVOCDetectionEvaluator(dataset_name) |
|
if evaluator_type == "lvis": |
|
return LVISEvaluator(dataset_name, cfg, True, output_folder) |
|
if len(evaluator_list) == 0: |
|
raise NotImplementedError( |
|
"no Evaluator for the dataset {} with the type {}".format(dataset_name, evaluator_type) |
|
) |
|
if len(evaluator_list) == 1: |
|
return evaluator_list[0] |
|
return DatasetEvaluators(evaluator_list) |
|
|
|
|
|
def do_test(cfg, model): |
|
results = OrderedDict() |
|
for dataset_name in cfg.DATASETS.TEST: |
|
data_loader = build_detection_test_loader(cfg, dataset_name) |
|
evaluator = get_evaluator( |
|
cfg, dataset_name, os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) |
|
) |
|
results_i = inference_on_dataset(model, data_loader, evaluator) |
|
results[dataset_name] = results_i |
|
if comm.is_main_process(): |
|
logger.info("Evaluation results for {} in csv format:".format(dataset_name)) |
|
print_csv_format(results_i) |
|
if len(results) == 1: |
|
results = list(results.values())[0] |
|
return results |
|
|
|
|
|
def do_train(cfg, model, resume=False): |
|
model.train() |
|
optimizer = build_optimizer(cfg, model) |
|
scheduler = build_lr_scheduler(cfg, optimizer) |
|
|
|
checkpointer = DetectionCheckpointer( |
|
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler |
|
) |
|
start_iter = ( |
|
checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1 |
|
) |
|
max_iter = cfg.SOLVER.MAX_ITER |
|
|
|
periodic_checkpointer = PeriodicCheckpointer( |
|
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter |
|
) |
|
|
|
writers = default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else [] |
|
|
|
|
|
|
|
data_loader = build_detection_train_loader(cfg) |
|
logger.info("Starting training from iteration {}".format(start_iter)) |
|
with EventStorage(start_iter) as storage: |
|
for data, iteration in zip(data_loader, range(start_iter, max_iter)): |
|
storage.iter = iteration |
|
|
|
loss_dict = model(data) |
|
losses = sum(loss_dict.values()) |
|
assert torch.isfinite(losses).all(), loss_dict |
|
|
|
loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()} |
|
losses_reduced = sum(loss for loss in loss_dict_reduced.values()) |
|
if comm.is_main_process(): |
|
storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced) |
|
|
|
optimizer.zero_grad() |
|
losses.backward() |
|
optimizer.step() |
|
storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False) |
|
scheduler.step() |
|
|
|
if ( |
|
cfg.TEST.EVAL_PERIOD > 0 |
|
and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0 |
|
and iteration != max_iter - 1 |
|
): |
|
do_test(cfg, model) |
|
|
|
comm.synchronize() |
|
|
|
if iteration - start_iter > 5 and ( |
|
(iteration + 1) % 20 == 0 or iteration == max_iter - 1 |
|
): |
|
for writer in writers: |
|
writer.write() |
|
periodic_checkpointer.step(iteration) |
|
|
|
|
|
def setup(args): |
|
""" |
|
Create configs and perform basic setups. |
|
""" |
|
cfg = get_cfg() |
|
cfg.merge_from_file(args.config_file) |
|
cfg.merge_from_list(args.opts) |
|
cfg.freeze() |
|
default_setup( |
|
cfg, args |
|
) |
|
return cfg |
|
|
|
|
|
def main(args): |
|
cfg = setup(args) |
|
|
|
model = build_model(cfg) |
|
logger.info("Model:\n{}".format(model)) |
|
if args.eval_only: |
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( |
|
cfg.MODEL.WEIGHTS, resume=args.resume |
|
) |
|
return do_test(cfg, model) |
|
|
|
distributed = comm.get_world_size() > 1 |
|
if distributed: |
|
model = DistributedDataParallel( |
|
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False |
|
) |
|
|
|
do_train(cfg, model, resume=args.resume) |
|
return do_test(cfg, model) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = default_argument_parser().parse_args() |
|
print("Command Line Args:", args) |
|
launch( |
|
main, |
|
args.num_gpus, |
|
num_machines=args.num_machines, |
|
machine_rank=args.machine_rank, |
|
dist_url=args.dist_url, |
|
args=(args,), |
|
) |
|
|