h2o-danube2 with ChatML template

This model was first fine-tuned with BAdam on TIGER-Lab/MathInstruct using LLama-Factory.

Quants

Mad props, mradermacher!

Template

<|im_start|>system
You are a helpful assistant specialised in mathematics.<|im_end|>
<|im_start|>user
{{instruction}}<|im_end|>
<|im_start|>assistant
{{response}}<|im_end|>

BAdam config

### model
model_name_or_path: danube2-base-chatml

### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 1
badam_start_block: 7
seed: 5772

### dataset
dataset: mathinstruct
template: ninja_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12

### output
output_dir: mathinstruct-chatml-badam
logging_steps: 5
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false

### train
per_device_train_batch_size: 4
gradient_accumulation_steps: 4
learning_rate: 0.000005
num_train_epochs: 1
lr_scheduler_type: cosine
warmup_ratio: 0.01
pure_bf16: true
flash_attn: fa2

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 1000

BAdam training results

Training Loss Epoch Step Validation Loss
0.2748 0.0617 1000 0.2788
0.2786 0.1234 2000 0.2503
0.18 0.1850 3000 0.2144
0.2015 0.2467 4000 0.1926
0.2044 0.3084 5000 0.1777
0.142 0.3701 6000 0.1661
0.1813 0.4317 7000 0.1570
0.1413 0.4934 8000 0.1529
0.1805 0.5551 9000 0.1462
0.1431 0.6168 10000 0.1410
0.1693 0.6784 11000 0.1375
0.1291 0.7401 12000 0.1357
0.1501 0.8018 13000 0.1348
0.1521 0.8635 14000 0.1345
0.1279 0.9251 15000 0.1346
0.1351 0.9868 16000 0.1344

GSM8K results

Tasks Version Filter n-shot Metric Value Stderr
gsm8k 3 strict-match 5 exact_match 0.2691 ± 0.0122
flexible-extract 5 exact_match 0.2752 ± 0.0123

It matches the chat trained model from h2o.

Downloads last month
10
Safetensors
Model size
1.83B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for trollek/danube2-1.8b-MathInstruct

Finetuned
(13)
this model
Quantizations
1 model

Dataset used to train trollek/danube2-1.8b-MathInstruct

Collection including trollek/danube2-1.8b-MathInstruct