Edit model card

h2o-danube2 with ChatML template

This is a BAdam and LoRA+ fine-tuned danube2 base model. It uses the ChatML template and was trained on the SystemChat-1.1 from Abacus.AI.

Quants

Thank you mradermacher!

Template

<|im_start|>system
{{system}}<|im_end|>
<|im_start|>user
{{instruction}}<|im_end|>
<|im_start|>assistant
{{response}}<|im_end|>

BAdam

### model
model_name_or_path: danube2-base-chatml

### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: descending
badam_switch_interval: 50
badam_start_block: 22
badam_mask_mode: scatter
badam_verbose: 1
seed: 314

### dataset
dataset: systemchat11
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12

### output
output_dir: systemchat11-chatml-badam
logging_steps: 5
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false

### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 0.00002
num_train_epochs: 3
lr_scheduler_type: cosine
warmup_ratio: 0.01
bf16: true
flash_attn: fa2

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 1000

BAdam Training results

Training Loss Epoch Step Validation Loss
1.0062 0.8324 1000 0.9837
0.8484 1.6648 2000 0.9388
0.7834 2.4971 3000 0.9309

QLoRA+

### model
model_name_or_path: systemchat11-chatml-badam

### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
loraplus_lr_ratio: 16.0
lora_rank: 8
lora_alpha: 16
use_unsloth: true
quantization_bit: 4
upcast_layernorm: true
seed: 31415

### dataset
dataset: systemchat11
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12

### output
output_dir: systemchat11-chatml-badam/loraplus
logging_steps: 1
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false

### train
per_device_train_batch_size: 4
gradient_accumulation_steps: 4
learning_rate: 0.0001
num_train_epochs: 2.0
lr_scheduler_type: cosine
warmup_ratio: 0.01
bf16: true
flash_attn: fa2

### eval
val_size: 0.02
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

QLoRA+ Training results

Training Loss Epoch Step Validation Loss
0.8591 0.4204 500 0.8457
0.9098 0.8409 1000 0.8251
0.735 1.2613 1500 0.8304
0.6811 1.6817 2000 0.8252
Downloads last month
15
Safetensors
Model size
1.83B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for trollek/danube2-1.8b-SystemChat-1.1

Quantizations
1 model

Dataset used to train trollek/danube2-1.8b-SystemChat-1.1

Collection including trollek/danube2-1.8b-SystemChat-1.1