problem347_model_mit
This model is a fine-tuned version of barc0/Llama-3.1-ARC-Potpourri-Transduction-8B on the tttx/problem347_mit dataset. It achieves the following results on the evaluation set:
- Loss: 0.0292
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 0.1121 |
0.1136 | 0.4 | 30 | 0.0323 |
0.0854 | 0.8 | 60 | 0.0274 |
0.0524 | 1.2 | 90 | 0.0294 |
0.0612 | 1.6 | 120 | 0.0289 |
0.082 | 2.0 | 150 | 0.0292 |
Framework versions
- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 6
Model tree for tttx/problem347_model_mit
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct